论文标题
使用稀疏框架中的光声重建:图像与数据域
Photoacoustic Reconstruction Using Sparsity in Curvelet Frame: Image versus Data Domain
论文作者
论文摘要
Curvelet框架对于光声断层扫描(PAT)具有特殊意义,因为其稀疏和微钙化特性。我们在图像中的波前方向和PAT中的数据空间之间得出了一对一的地图,这表明在假设在Culvelet框架中稀疏时,初始压力的恢复与从压缩/亚采样测量值的恢复之间的等效性几乎相等。由于后者在计算上更容易处理,因此研究在本文中所具有的等效性具有直接的实际意义。为此,我们制定并比较DR,这是基于从次采样数据中的光声数据的完整体积的恢复,然后是声音反演的两步方法,而P0R(P0R)是一个步骤方法,其中光声图像(初始压力,P0,p0)是直接从子缩放数据中直接恢复的。光声数据的有效表示需要在光声向前操作员范围内定义的基础。为此,我们提出了一种新颖的culvelet变换楔形限制,使我们能够构建这种基础。这两个恢复问题均在变异框架中提出。随着curvelet框架的大量确定,我们使用重新持续的L1 NORM惩罚来增强溶液的稀疏性。数据重建问题DR是一种标准压缩感测恢复问题,我们使用ADMMTYPE算法(SALSA)解决该问题。随后,使用K-Wave工具箱中实现的时间反转来恢复初始压力。 P0重建问题P0R旨在直接通过Fista恢复光声图像,或者在包括非负约束(包括非阴性约束)的加上ADMM。我们比较和讨论两种方法的相对优点,并以公平而严格的方式在2D模拟和3D真实数据上进行说明。
Curvelet frame is of special significance for photoacoustic tomography (PAT) due to its sparsifying and microlocalisation properties. We derive a one-to-one map between wavefront directions in image and data spaces in PAT which suggests near equivalence between the recovery of the initial pressure and PAT data from compressed/subsampled measurements when assuming sparsity in Curvelet frame. As the latter is computationally more tractable, investigation to which extent this equivalence holds conducted in this paper is of immediate practical significance. To this end we formulate and compare DR, a two step approach based on the recovery of the complete volume of the photoacoustic data from the subsampled data followed by the acoustic inversion, and p0R, a one step approach where the photoacoustic image (the initial pressure, p0) is directly recovered from the subsampled data. Effective representation of the photoacoustic data requires basis defined on the range of the photoacoustic forward operator. To this end we propose a novel wedge-restriction of Curvelet transform which enables us to construct such basis. Both recovery problems are formulated in a variational framework. As the Curvelet frame is heavily overdetermined, we use reweighted l1 norm penalties to enhance the sparsity of the solution. The data reconstruction problem DR is a standard compressed sensing recovery problem, which we solve using an ADMMtype algorithm, SALSA. Subsequently, the initial pressure is recovered using time reversal as implemented in the k-Wave Toolbox. The p0 reconstruction problem, p0R, aims to recover the photoacoustic image directly via FISTA, or ADMM when in addition including a non-negativity constraint. We compare and discuss the relative merits of the two approaches and illustrate them on 2D simulated and 3D real data in a fair and rigorous manner.