论文标题
量子网络中的确定性多Qubit纠缠
Deterministic multi-qubit entanglement in a quantum network
论文作者
论文摘要
量子纠缠是量子计算和量子通信\ cite {nielsen2010}的关键资源。扩展到大量子通信或计算网络,需要确定性生成多Qubit纠缠\ Cite {Gottesman1999,Duan2001,Jiang2007}。最近已经用微波光子\ Cite {Kurpiers2018,Axline2018,Campagne2018,Leung2019,Zhong2019},光光子\ Cite \ Cite {humphreysys2018}和表面听觉波浪声源\ cite20202019。但是,尚未证明多数纠缠的确定性产生和传播,这主要是由于国家转移保真度有限。在这里,我们报告了一个量子网络,该量子网络包括两个由1米长的超导同轴电缆连接的两个独立的超导量子节点,其中每个节点都包含三个相互连接的量子。通过将同轴电缆直接连接到每个节点中的一个量子,我们可以在节点之间传输量子状态,过程保真度为$ 0.911 \ pm0.008 $。使用高保真沟通链接,我们可以在一个节点中准备一个三分之一的Greenberger-Horne-Zeilinger(GHz)状态\ cite {Greenberger1990,Neeley2010,Dicarlo2010},并确定性地将此状态转移到另一个节点,并带有一个转移的状态,并带有0.656 \ pm 0.0014 $ $ 0.656 \ pm $ 0.656 \ pm $ 0.656 $ $。我们进一步使用该系统确定性地生成一个两节点的六分GHz状态,该状态在网络中全球分布,状态保真度为$ 0.722 \ pm0.021 $。 GHz状态的忠诚度显然高于真正的多部分纠缠\ cite {guhne2010}的阈值$ 1/2 $,并表明该体系结构可连贯地将多个超导量子处理器连接在一起,为建立大型量子计算机\ cite \ cite \ cite \ cite \ cite {monroe2014}提供了一个模块化方法。
Quantum entanglement is a key resource for quantum computation and quantum communication \cite{Nielsen2010}. Scaling to large quantum communication or computation networks further requires the deterministic generation of multi-qubit entanglement \cite{Gottesman1999,Duan2001,Jiang2007}. The deterministic entanglement of two remote qubits has recently been demonstrated with microwave photons \cite{Kurpiers2018,Axline2018,Campagne2018,Leung2019,Zhong2019}, optical photons \cite{Humphreys2018} and surface acoustic wave phonons \cite{Bienfait2019}. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily due to limited state transfer fidelities. Here, we report a quantum network comprising two separate superconducting quantum nodes connected by a 1 meter-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the coaxial cable to one qubit in each node, we can transfer quantum states between the nodes with a process fidelity of $0.911\pm0.008$. Using the high-fidelity communication link, we can prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state \cite{Greenberger1990,Neeley2010,Dicarlo2010} in one node and deterministically transfer this state to the other node, with a transferred state fidelity of $0.656\pm 0.014$. We further use this system to deterministically generate a two-node, six-qubit GHZ state, globally distributed within the network, with a state fidelity of $0.722\pm0.021$. The GHZ state fidelities are clearly above the threshold of $1/2$ for genuine multipartite entanglement \cite{Guhne2010}, and show that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers \cite{Monroe2014,Chou2018}.