论文标题

社会疏远的困境中的振荡动态

Oscillatory dynamics in the dilemma of social distancing

论文作者

Glaubitz, Alina, Fu, Feng

论文摘要

作为主要的非药物干预措施之一,社会疏远可以帮助降低疾病的传播,例如19日大流行。有效的社会距离,除非被强制封锁和强制性的警戒线卫生,否则需要一致的严格集体依从性。但是,尚不清楚由此产生的社会疏远依从性及其对疾病缓解的影响的决定因素。在这里,我们通过控制社会疏远行为的演变的进化游戏理论模型将其纳入流行病学过程。在我们的模型中,我们假设个人的行为符合他们的最大利益,而他们的决定是由与社会疏远成本相比的实时感染风险的自适应社会学习所驱动的。我们发现有趣的振荡动力学动态伴随着感染波。此外,振荡动力学因对决策制定的模型参数的非平凡依赖而受阻,并在累积感染超过群疫苗时逐渐停止。与没有社会疏远的情况相比,我们量化了社会距离减轻流行病的程度及其对个人行为变化的响应能力和理性的依赖。我们的工作为利用人类行为支持大流行反应提供了新的见解。

Social distancing as one of the main non-pharmaceutical interventions can help slow down the spread of diseases, like in the COVID-19 pandemic. Effective social distancing, unless enforced as drastic lockdowns and mandatory cordon sanitaire, requires consistent strict collective adherence. However, it remains unknown what the determinants for the resultant compliance of social distancing and their impact on disease mitigation are. Here, we incorporate into the epidemiological process with an evolutionary game theory model that governs the evolution of social distancing behavior. In our model, we assume an individual acts in their best interest and their decisions are driven by adaptive social learning of the real-time risk of infection in comparison with the cost of social distancing. We find interesting oscillatory dynamics of social distancing accompanied with waves of infection. Moreover, the oscillatory dynamics are dampened with a nontrivial dependence on model parameters governing decision-makings and gradually cease when the cumulative infections exceed the herd immunity. Compared to the scenario without social distancing, we quantify the degree to which social distancing mitigates the epidemic and its dependence on individuals' responsiveness and rationality in their behavior changes. Our work offers new insights into leveraging human behavior in support of pandemic response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源