论文标题
拳头:自动设计流参数调整的特征对象采样和基于树的方法
FIST: A Feature-Importance Sampling and Tree-Based Method for Automatic Design Flow Parameter Tuning
论文作者
论文摘要
设计流程参数对于芯片设计质量至关重要,需要痛苦的时间来评估其效果。实际上,流程参数调整通常以临时方式根据设计师的经验手动执行。在这项工作中,我们引入了一种基于机器学习的自动参数调整方法,旨在通过有限的试验找到最佳的设计质量。我们不仅会插入机器学习引擎,还开发了聚类和近似采样技术,以提高调音效率。此方法中的功能提取可以重复使用先前设计的知识。此外,我们利用最先进的XGBoost模型,并提出一种新型的动态树技术来克服过度拟合。基准电路的实验结果表明,与随机森林方法相比,我们的方法的设计质量提高了25%,采样成本下降了37%,这是一项备受推测的先前工作的内核。我们的方法在两种工业设计上得到了进一步验证。通过对可能的参数集的少于0.02%的采样,与经验丰富的设计师手工调整的最佳解决方案相比,它可将面积降低1.83%和1.43%。
Design flow parameters are of utmost importance to chip design quality and require a painfully long time to evaluate their effects. In reality, flow parameter tuning is usually performed manually based on designers' experience in an ad hoc manner. In this work, we introduce a machine learning-based automatic parameter tuning methodology that aims to find the best design quality with a limited number of trials. Instead of merely plugging in machine learning engines, we develop clustering and approximate sampling techniques for improving tuning efficiency. The feature extraction in this method can reuse knowledge from prior designs. Furthermore, we leverage a state-of-the-art XGBoost model and propose a novel dynamic tree technique to overcome overfitting. Experimental results on benchmark circuits show that our approach achieves 25% improvement in design quality or 37% reduction in sampling cost compared to random forest method, which is the kernel of a highly cited previous work. Our approach is further validated on two industrial designs. By sampling less than 0.02% of possible parameter sets, it reduces area by 1.83% and 1.43% compared to the best solutions hand-tuned by experienced designers.