论文标题

整数和拉姆齐定理的乘法表示

Multiplicative representations of integers and Ramsey's theorem

论文作者

Nathanson, Melvyn B.

论文摘要

令$ \ Mathcal {b} =(b_1,\ ldots,b_h)$为$ h $ - 集合的正整数。令$ g _ {\ mathcal {b}}(n)$计数$ n = b_1 \ cdots b_h $中的$ n $的表示形式,其中$ b_i \ in b_i $ in b_i $ in b_i $ for ALL $ i \ in \ in \ in \ {1,\ ldots,h \ \} $。事实证明,$ \ liminf_ {n \ rightarrow \ infty} g _ {\ Mathcal {b}}}(n)\ geq 2 $含义$ \ limsup_ {

Let $\mathcal{B} = (B_1,\ldots, B_h)$ be an $h$-tuple of sets of positive integers. Let $g_{\mathcal{B} }(n)$ count the number of representations of $n$ in the form $n = b_1\cdots b_h$, where $b_i \in B_i$ for all $i \in \{1,\ldots, h\}$. It is proved that $\liminf_{n\rightarrow \infty} g_{\mathcal{B} }(n) \geq 2$ implies $\limsup_{n\rightarrow \infty} g_{\mathcal{B} }(n) = \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源