论文标题
四维复曲孔的同质分类
The homotopy classification of four-dimensional toric orbifolds
论文作者
论文摘要
令$ x $为$ 4 $维的紫红色Orbifold。如果$ h^3(x)$具有非平凡的奇数主要扭转,那么我们表明$ x $是同质的,等于摩尔空间的楔形物和CW-Complex。作为推论,鉴于两个4维的圆环圆形圆孔在协同学中没有2个扭转,我们证明它们具有相同的同型如果并且仅具有它们的积分共同体学环是同构的。
Let $X$ be a $4$-dimensional toric orbifold. If $H^3(X)$ has a non-trivial odd primary torsion, then we show that $X$ is homotopy equivalent to the wedge of a Moore space and a CW-complex. As a corollary, given two 4-dimensional toric orbifolds having no 2-torsion in the cohomology, we prove that they have the same homotopy type if and only their integral cohomology rings are isomorphic.