论文标题

使用社交媒体数据,卫星图像和地理空间信息来解释的贫困映射

Interpretable Poverty Mapping using Social Media Data, Satellite Images, and Geospatial Information

论文作者

Ledesma, Chiara, Garonita, Oshean Lee, Flores, Lorenzo Jaime, Tingzon, Isabelle, Dalisay, Danielle

论文摘要

获取准确,颗粒状和最新的贫困数据对于人道主义组织确定较脆弱的贫困地区至关重要。最近的作品表明,在结合计算机视觉和卫星图像以进行贫困估计方面取得了成功。但是,获取高分辨率图像以及黑匣子模型的成本可能是许多开发组织采用的障碍。在这项研究中,我们提出了一种可解释且具有成本效益的方法,用于使用机器学习和易于访问的数据源,包括社交媒体数据,低分辨率卫星图像和自愿的地理信息。使用我们的方法,我们在菲律宾的财富估计中达到了$ r^2 $ 0.66,而使用卫星图像为0.63。最后,我们使用功能重要性分析来确定全球和本地贡献最高的功能,以帮助决策者获得对贫困的更深入的见解。

Access to accurate, granular, and up-to-date poverty data is essential for humanitarian organizations to identify vulnerable areas for poverty alleviation efforts. Recent works have shown success in combining computer vision and satellite imagery for poverty estimation; however, the cost of acquiring high-resolution images coupled with black box models can be a barrier to adoption for many development organizations. In this study, we present a interpretable and cost-efficient approach to poverty estimation using machine learning and readily accessible data sources including social media data, low-resolution satellite images, and volunteered geographic information. Using our method, we achieve an $R^2$ of 0.66 for wealth estimation in the Philippines, compared to 0.63 using satellite imagery. Finally, we use feature importance analysis to identify the highest contributing features both globally and locally to help decision makers gain deeper insights into poverty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源