论文标题
淬灭泊松过程,用于随机换乘有限类型
Quenched Poisson processes for random subshifts of finite type
论文作者
论文摘要
在本文中,我们研究了一类随机动态系统的打击时间的淬灭分布。我们证明,在随机衡量的定律下,与超级多项式相关性的相关性衰减的定律将动态定义的圆柱体的时间融合到泊松点过程。特别是,我们将结果应用于配备随机不变的吉布斯测量的有限型统一的随机亚班。我们强调,我们对边际度量的混合特性没有任何假设。
In this paper we study the quenched distributions of hitting times for a class of random dynamical systems. We prove that hitting times to dynamically defined cylinders converge to a Poisson point process under the law of random equivariant measures with super-polynomial decay of correlations. In particular, we apply our results to uniformly aperiodic random subshifts of finite type equipped with random invariant Gibbs measures. We emphasize that we make no assumptions about the mixing property of the marginal measure.