论文标题
操纵医学图像翻译与歧管解脱
Manipulating Medical Image Translation with Manifold Disentanglement
论文作者
论文摘要
医学图像翻译(例如CT到MR)是一项具有挑战性的任务,因为它需要i)忠实地翻译域不变特征(例如解剖结构的形状信息)和ii)靶标特征的现实综合(例如,MR中的组织外观)。在这项工作中,我们提出了一种歧管驱动器生成对抗网络(MDGAN),这是一个新型的图像翻译框架,可显式地对这两种特征进行建模。它采用完全卷积的发电机来建模域不变特征,并使用样式代码分别建模目标域特征作为歧管。该设计旨在明确地删除域 - 不变特征和特定于域的特征,同时获得对两者的个人控制。图像翻译过程是作为样式任务的配方,其中输入是根据从学习的歧管中采样的样式代码“样式化”(翻译成)为各种目标域图像的。我们测试了MDGAN的多模式医学图像翻译,其中我们在歧管上创建了两个域特异性的歧管簇,分别将分割图转换为伪CT和伪MR图像。我们表明,通过穿越MR歧管群集的路径,可以操纵目标输出,同时仍从输入中保留形状信息。
Medical image translation (e.g. CT to MR) is a challenging task as it requires I) faithful translation of domain-invariant features (e.g. shape information of anatomical structures) and II) realistic synthesis of target-domain features (e.g. tissue appearance in MR). In this work, we propose Manifold Disentanglement Generative Adversarial Network (MDGAN), a novel image translation framework that explicitly models these two types of features. It employs a fully convolutional generator to model domain-invariant features, and it uses style codes to separately model target-domain features as a manifold. This design aims to explicitly disentangle domain-invariant features and domain-specific features while gaining individual control of both. The image translation process is formulated as a stylisation task, where the input is "stylised" (translated) into diverse target-domain images based on style codes sampled from the learnt manifold. We test MDGAN for multi-modal medical image translation, where we create two domain-specific manifold clusters on the manifold to translate segmentation maps into pseudo-CT and pseudo-MR images, respectively. We show that by traversing a path across the MR manifold cluster, the target output can be manipulated while still retaining the shape information from the input.