论文标题

ML-MOC:基于机器学习(KNN和GMM)开放群集的会员资格确定

ML-MOC: Machine Learning (kNN and GMM) based Membership Determination for Open Clusters

论文作者

Agarwal, Manan, Rao, Khushboo K., Vaidya, Kaushar, Bhattacharya, Souradeep

论文摘要

现有的开放群集成员确定算法先验取决于簇的某些已知参数,或者不适合大型群集样本。在本文中,我们介绍了一种基于机器学习的新方法ML-MOC,可使用GAIA DR2数据识别开放群集的可能成员,并且没有有关群集参数的先验信息。我们在高精度正确的运动和Gaia DR2数据的高度测量中,使用K-Nearest邻居(KNN)算法和高斯混合模型(GMM)来确定单个来源的成员资格概率降低到G〜20 MAG。 To validate the developed method, we apply it on fifteen open clusters: M67, NGC 2099, NGC 2141, NGC 2243, NGC 2539, NGC 6253, NGC 6405, NGC 6791, NGC 7044, NGC 7142, NGC 752, Blanco 1, Berkeley 18, IC 4651, and性。这些簇在其年龄,距离,金属性,灭绝的方面有所不同,并以适当的运动和视差相对于田间人口而涵盖了广泛的参数空间。提取的成员产生了干净的颜色 - 磁性图,我们的簇的星形参数与先前作品得出的值非常吻合。提取成员的估计污染程度在2%至12%之间。结果表明,ML-MOC是一种可靠的方法,可以将开放群集成员与现场恒星隔离。

The existing open cluster membership determination algorithms are either prior dependent on some known parameters of clusters or are not automatable to large samples of clusters. In this paper, we present, ML-MOC, a new machine learning based approach to identify likely members of open clusters using the Gaia DR2 data, and no a priori information about cluster parameters. We use the k-Nearest Neighbours (kNN) algorithm and the Gaussian Mixture Model (GMM) on the high-precision proper motions and parallax measurements from Gaia DR2 data to determine the membership probabilities of individual sources down to G ~20 mag. To validate the developed method, we apply it on fifteen open clusters: M67, NGC 2099, NGC 2141, NGC 2243, NGC 2539, NGC 6253, NGC 6405, NGC 6791, NGC 7044, NGC 7142, NGC 752, Blanco 1, Berkeley 18, IC 4651, and Hyades. These clusters differ in terms of their ages, distances, metallicities, extinctions and cover a wide parameter space in proper motions and parallaxes with respect to the field population. The extracted members produce clean colour-magnitude diagrams and our astrometric parameters of the clusters are in good agreement with the values derived by the previous works. The estimated degree of contamination in the extracted members range between 2% and 12%. The results show that ML-MOC is a reliable approach to segregate the open cluster members from the field stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源