论文标题

来自Cuntz代数的Higman-Thompson组的代表

Representations of Higman-Thompson groups from Cuntz algebras

论文作者

Araújo, Francisco, Pinto, Paulo R.

论文摘要

Cuntz Algebra $ \ Mathcal {O} _n $的每个表示都会导致Higman-Thompson Group $ v_n $的单一表示。我们考虑家庭$ \ {π_x\} _ {x \ in [0,1 [} $的$ \ Mathcal {o} _n $的定位表示$,它们是从间隔映射$ f(x)= x)= nx $(mod 1)在每个典型的典型范围内的元素和一个单位equival equivalsive andirecrience andire andirecival andirecrience andirecrience andirecrience andirecival和nir equivalsive andirecivalsive和Irred equivalsival andirecivalsival的nx $(mod 1)产生的。 $ \ {ρ_x\} _ {x \ in [0,1 [} $ higman-thompson $ v_n $的表示形式,表明这些表示的确是不可修复的,而且仅在$ x $ y $ x $ y $ y $ y $ y $ y $ x $ y y时,这些表示的$ρ_x$和$ρ_x$和$ρ_y$是同等的。

Every representation of the Cuntz algebra $\mathcal{O}_n$ leads to a unitary representation of the Higman-Thompson group $V_n$. We consider the family $\{π_x\}_{x\in [0,1[}$ of permutative representations of $\mathcal{O}_n$ that arise from the interval map $f(x)=nx$ (mod 1) acting on the Hilbert space that underlies each orbit, and then study the unitary equivalence and the irreducibility of the corresponding family $\{ρ_x\}_{x\in [0,1[}$ of representations of Higman-Thompson group $V_n$, showing that that these representations are indeed irreducible and moreover $ρ_x$ and $ρ_y$ are equivalent if and only if the orbits of $x$ and $y$ coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源