论文标题

Bose-Einstein的动量相关性在固定倍数上:来自LHC的$ PP $碰撞的精确解决热模型的课程

Bose-Einstein momentum correlations at fixed multiplicities: Lessons from an exactly solvable thermal model for $pp$ collisions at the LHC

论文作者

Adzhymambetov, M. D., Akkelin, S. V., Sinyukov, Yu. M.

论文摘要

在量子规范合奏中研究了$ n $相同玻色子的两粒子动量相关性。我们将后者定义为与大规范合奏相关的适当选择的事件,其特征在于恒定温度和谐波陷阱化学电位。该玩具模型的优点是它可以准确地解决,并且展示了最近在LHC上$ P+P $ Collisions中创建的小型系统中揭示的一些有趣的功能。我们发现,如果事件的完全热组合,可以在粒子发射中观察到部分连贯性,如果而不是包容性测量,则研究与某些固定多重性箱中选择的粒子数量相关的两波孔分布函数。相应的相干效应随着多重性而增加。

Two-particle momentum correlations of $N$ identical bosons are studied in the quantum canonical ensemble. We define the latter as a properly selected subensemble of events associated with the grand canonical ensemble which is characterized by a constant temperature and a harmonic-trap chemical potential. The merits of this toy model are that it can be solved exactly, and that it demonstrates some interesting features revealed recently in small systems created in $p+p$ collisions at the LHC. We find that partial coherence can be observed in particle emission from completely thermal ensembles of events if instead of inclusive measurements one studies the two-boson distribution functions related to the events with particle numbers selected in some fixed multiplicity bins. The corresponding coherence effects increase with the multiplicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源