论文标题

calabi-yau的特征值和特征值三倍

Eigenvalues and eigenforms on Calabi-Yau threefolds

论文作者

Ashmore, Anthony

论文摘要

我们提出了一种用于计算calabi-yau歧管上Laplace-DE RHAM运算符频谱的数值算法,从而扩展了标量Laplace操作员的先前工作。使用近似的calabi-yau度量作为输入,我们计算了在$(p,q)$上作用的拉普拉斯运算符的特征值和特征,以示例为fermat quintic trightic三倍。我们通过计算$(p,q)$ - eigenforms在$ \ mathbb {p}^{3} $上的频谱来检查我们的算法。

We present a numerical algorithm for computing the spectrum of the Laplace-de Rham operator on Calabi-Yau manifolds, extending previous work on the scalar Laplace operator. Using an approximate Calabi-Yau metric as input, we compute the eigenvalues and eigenforms of the Laplace operator acting on $(p,q)$-forms for the example of the Fermat quintic threefold. We provide a check of our algorithm by computing the spectrum of $(p,q)$-eigenforms on $\mathbb{P}^{3}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源