论文标题

在小规模数据上进行部分监督的多结构医学图像细分

Towards Robust Partially Supervised Multi-Structure Medical Image Segmentation on Small-Scale Data

论文作者

Dong, Nanqing, Kampffmeyer, Michael, Liang, Xiaodan, Xu, Min, Voiculescu, Irina, Xing, Eric P.

论文摘要

深度学习的数据驱动性质(DL)模型进行语义分割需要大量像素级注释。但是,大规模且完全标记的医疗数据集通常无法完成实际任务。最近,已经提出了部分监督的方法来利用医疗领域中标签不完整的图像。为了在数据稀缺下部分监督学习(PSL)中弥合方法学差距,我们提出了不确定性(VLUU)下的阴性标签,这是一个简单而有效的框架,利用人类结构相似性进行部分监督的医学图像细分。弗鲁(Vluu)通过多任务学习和笼子风险最小化的动机,通过产生情况标签将部分监督的问题转变为完全监督的问题。我们在两个常用的分段数据集对小型数据,数据集偏移和类不平衡的挑战下系统地评估Vluu,以实现胸部器官细分和视盘和计算分段的任务。实验结果表明,在这些设置中,Vluu可以持续优于以前的部分监督模型。我们的研究表明,通过部分监督,在标签有效的深度学习方面有一个新的研究方向。

The data-driven nature of deep learning (DL) models for semantic segmentation requires a large number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often unavailable for practical tasks. Recently, partially supervised methods have been proposed to utilize images with incomplete labels in the medical domain. To bridge the methodological gaps in partially supervised learning (PSL) under data scarcity, we propose Vicinal Labels Under Uncertainty (VLUU), a simple yet efficient framework utilizing the human structure similarity for partially supervised medical image segmentation. Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels. We systematically evaluate VLUU under the challenges of small-scale data, dataset shift, and class imbalance on two commonly used segmentation datasets for the tasks of chest organ segmentation and optic disc-and-cup segmentation. The experimental results show that VLUU can consistently outperform previous partially supervised models in these settings. Our research suggests a new research direction in label-efficient deep learning with partial supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源