论文标题

用于学习材料界面力学的热力学一致的神经网络

Thermodynamic Consistent Neural Networks for Learning Material Interfacial Mechanics

论文作者

Zhang, Jiaxin, Wei, Congjie, Wu, Chenglin

论文摘要

对于薄底物系统中的多层材料,界面故障是最挑战之一。牵引分离关系(TSR)定量地描述了经过开口的材料界面的机械行为,这对于理解和预测复杂负载下的界面故障至关重要。但是,现有的理论模型对足够的复杂性和灵活性有局限性,可以从实验观察中很好地学习现实世界中的TSR。由于缺乏实验数据和对隐藏的物理机制的理解,神经网络可以与负载路径一起符合加载路径,但通常无法遵守物理定律。在本文中,我们提出了一种热力学一致的神经网络(TCNN)方法,以构建具有稀疏实验数据的TSR的数据驱动模型。 TCNN利用物理信息信息网络(PINN)的最新进展,这些神经网络(PINN)将先前的物理信息编码为损失函数,并使用自动分化有效地训练神经网络。我们研究了三个热力学一致的原理,即正能量耗散,最陡峭的能量耗散梯度和能量保守的载荷路径。所有这些都是数学配制的,并嵌入具有新颖定义的损耗函数的神经网络模型中。一个真实的实验证明了TCNN的出色性能,我们发现TCNN提供了整个TSR表面的准确预测,并显着降低了针对物理定律的违反预测。

For multilayer materials in thin substrate systems, interfacial failure is one of the most challenges. The traction-separation relations (TSR) quantitatively describe the mechanical behavior of a material interface undergoing openings, which is critical to understand and predict interfacial failures under complex loadings. However, existing theoretical models have limitations on enough complexity and flexibility to well learn the real-world TSR from experimental observations. A neural network can fit well along with the loading paths but often fails to obey the laws of physics, due to a lack of experimental data and understanding of the hidden physical mechanism. In this paper, we propose a thermodynamic consistent neural network (TCNN) approach to build a data-driven model of the TSR with sparse experimental data. The TCNN leverages recent advances in physics-informed neural networks (PINN) that encode prior physical information into the loss function and efficiently train the neural networks using automatic differentiation. We investigate three thermodynamic consistent principles, i.e., positive energy dissipation, steepest energy dissipation gradient, and energy conservative loading path. All of them are mathematically formulated and embedded into a neural network model with a novel defined loss function. A real-world experiment demonstrates the superior performance of TCNN, and we find that TCNN provides an accurate prediction of the whole TSR surface and significantly reduces the violated prediction against the laws of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源