论文标题
使用卷积神经网络基于Gleason分级的自动前列腺癌诊断
Automated Prostate Cancer Diagnosis Based on Gleason Grading Using Convolutional Neural Network
论文作者
论文摘要
使用组织学图像的格里森分级系统是前列腺癌最强大的诊断和预后预测指标。当前的标准检查是评估病理学家Gleason H&E染色的组织病理学图像。但是,它是复杂的,耗时的,并且受到观察者的影响。自动学习图像特征并获得更高泛化能力的深度学习(DL)方法引起了极大的关注。然而,尤其是使用DL来训练整个幻灯片图像(WSI),这是当前诊断环境中主要的临床来源,其中包含数十亿像素,形态异质性和人工制品。因此,我们提出了一种基于整个幻灯片组织病理学图像的基于卷积神经网络(CNN)的自动分类方法,以精确分级PCA。在本文中,提出了一种名为基于斑块的图像重建(PBIR)的数据增强方法,以减少高分辨率并增加WSI的多样性。此外,开发了分布校正(DC)模块,以通过调整数据分布来增强验证模型对目标数据集的适应。此外,提出了二次加权均方根误差(QWMSE)功能,以减少由相等的欧几里得距离引起的误诊。我们的实验表明,PBIR,DC和QWMSE功能的组合对于实现卓越的专家级别的性能是必要的,从而取得了最佳结果(0.8885二次加权Kappa系数)。
The Gleason grading system using histological images is the most powerful diagnostic and prognostic predictor of prostate cancer. The current standard inspection is evaluating Gleason H&E-stained histopathology images by pathologists. However, it is complicated, time-consuming, and subject to observers. Deep learning (DL) based-methods that automatically learn image features and achieve higher generalization ability have attracted significant attention. However, challenges remain especially using DL to train the whole slide image (WSI), a predominant clinical source in the current diagnostic setting, containing billions of pixels, morphological heterogeneity, and artifacts. Hence, we proposed a convolutional neural network (CNN)-based automatic classification method for accurate grading of PCa using whole slide histopathology images. In this paper, a data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs. In addition, a distribution correction (DC) module was developed to enhance the adaption of pretrained model to the target dataset by adjusting the data distribution. Besides, a Quadratic Weighted Mean Square Error (QWMSE) function was presented to reduce the misdiagnosis caused by equal Euclidean distances. Our experiments indicated the combination of PBIR, DC, and QWMSE function was necessary for achieving superior expert-level performance, leading to the best results (0.8885 quadratic-weighted kappa coefficient).