论文标题

switchx:gmin-gmax切换可为reram XBARS上的二进制神经网络实施能效和强大的实现

SwitchX: Gmin-Gmax Switching for Energy-Efficient and Robust Implementation of Binary Neural Networks on ReRAM Xbars

论文作者

Bhattacharjee, Abhiroop, Panda, Priyadarshini

论文摘要

回忆横梁可以有效地实施二进制神经网络(BNN),其中权重存储在突触的高阻力状态(HRS)和低阻抗状态(LRS)中。我们提出将BNN权重的开关图映射到RERAM横杆上,以使横杆非理想性的影响(导致计算精度降解)被最小化。从本质上讲,SwitchX以这种方式映射二进制重量,使得横杆实例的HR比LRS突触更多。我们发现,与基线的标准横杆映射的BNN相比,BNN映射到具有SwitchX的横杆上,表现出更好的鲁棒性,对对抗性攻击具有更好的鲁棒性。最后,我们将SwitchX与州感知培训(进一步提高了重量映射过程中HRS的可行性)相结合,以提高BNN在硬件上的鲁棒性。我们发现,这种方法比对抗性训练具有更强的防御对抗攻击,这是一种最先进的软件防御。我们使用基准数据集(CIFAR-10,CIFAR-100和Tinyimagenet)对VGG16 BNN进行实验,并使用快速梯度符号方法和预测的梯度下降对抗攻击。我们表明,SwitchX与州感知训练相结合的清洁精度可提高约35%,而针对常规BNN的对抗精度约为6-16%。此外,由于HRS突触的比例增加,SwitchX映射的重要副产品是增加了横杆功率,这是通过州感知的培训进一步的。我们使用CIFAR-10&CIFAR-100数据集,在16x16&32x32横梁上通过SwitchX映射的州培训的BNN可为横杆功率消耗节省高达约21-22%。

Memristive crossbars can efficiently implement Binarized Neural Networks (BNNs) wherein the weights are stored in high-resistance states (HRS) and low-resistance states (LRS) of the synapses. We propose SwitchX mapping of BNN weights onto ReRAM crossbars such that the impact of crossbar non-idealities, that lead to degradation in computational accuracy, are minimized. Essentially, SwitchX maps the binary weights in such manner that a crossbar instance comprises of more HRS than LRS synapses. We find BNNs mapped onto crossbars with SwitchX to exhibit better robustness against adversarial attacks than the standard crossbar-mapped BNNs, the baseline. Finally, we combine SwitchX with state-aware training (that further increases the feasibility of HRS states during weight mapping) to boost the robustness of a BNN on hardware. We find that this approach yields stronger defense against adversarial attacks than adversarial training, a state-of-the-art software defense. We perform experiments on a VGG16 BNN with benchmark datasets (CIFAR-10, CIFAR-100 & TinyImagenet) and use Fast Gradient Sign Method and Projected Gradient Descent adversarial attacks. We show that SwitchX combined with state-aware training can yield upto ~35% improvements in clean accuracy and ~6-16% in adversarial accuracies against conventional BNNs. Furthermore, an important by-product of SwitchX mapping is increased crossbar power savings, owing to an increased proportion of HRS synapses, that is furthered with state-aware training. We obtain upto ~21-22% savings in crossbar power consumption for state-aware trained BNN mapped via SwitchX on 16x16 & 32x32 crossbars using the CIFAR-10 & CIFAR-100 datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源