论文标题

在排列组下对最大纠缠的限制

Constraints on Maximal Entanglement Under Groups of Permutations

论文作者

Meill, Alexander, Butts, Jayden, Sanderson, Elijah

论文摘要

我们在物理系统中提供了简化的纠缠表征,在物理系统中,在对称组的亚组的作用下是对称群体对党标签的对称的。一组纠缠在本质上是平等的,位于组作用下的同一轨道中,我们为环状,二面和多面体组演示。然后,我们通过利用物理对称组的归一化器和正常亚组来为纠缠者的最大值引入新的广义关系。

We provide a simplified characterization of entanglement in physical systems which are symmetric under the action of subgroups of the symmetric group acting on the party labels. Sets of entanglements are inherently equal, lying in the same orbit under the group action, which we demonstrate for cyclic, dihedral, and polyhedral groups. We then introduce new, generalized relationships for the maxima of those entanglement by exploiting the normalizer and normal subgroups of the physical symmetry group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源