论文标题
DUT:通过简单观看不稳定的视频来学习视频稳定
DUT: Learning Video Stabilization by Simply Watching Unstable Videos
论文作者
论文摘要
以前的基于深度学习的视频稳定器需要大量的配对不稳定和稳定的视频进行培训,这很难收集。另一方面,基于传统的基于轨迹的稳定器将任务分为几个子任务并随后解决这些子任务,它们在使用手工制作的功能方面无纹理和遮挡的区域脆弱。在本文中,我们试图以一种深刻的无监督学习方式解决视频稳定问题,这借用了从传统稳定器中的分裂和争议的想法,同时利用DNNS的代表权来应对现实情况下的挑战。从技术上讲,DUT由轨迹估计阶段和轨迹平滑阶段组成。在轨迹估计阶段,我们首先估计了按键的运动,并分别通过新颖的多训术估计策略和运动改进网络初始化和完善网格的运动,并通过时间关联获得基于网格的轨迹。在轨迹平滑阶段,我们设计了一个新颖的网络来预测轨迹平滑的动态平滑核,这可以很好地适应具有不同动态模式的轨迹。我们利用关键点和网格顶点的空间和时间连贯性来制定训练目标,从而实现了无监督的培训计划。公共基准的实验结果表明,DUT在定性和定量上都优于最先进的方法。源代码可在https://github.com/annbless/dutcode上找到。
Previous deep learning-based video stabilizers require a large scale of paired unstable and stable videos for training, which are difficult to collect. Traditional trajectory-based stabilizers, on the other hand, divide the task into several sub-tasks and tackle them subsequently, which are fragile in textureless and occluded regions regarding the usage of hand-crafted features. In this paper, we attempt to tackle the video stabilization problem in a deep unsupervised learning manner, which borrows the divide-and-conquer idea from traditional stabilizers while leveraging the representation power of DNNs to handle the challenges in real-world scenarios. Technically, DUT is composed of a trajectory estimation stage and a trajectory smoothing stage. In the trajectory estimation stage, we first estimate the motion of keypoints, initialize and refine the motion of grids via a novel multi-homography estimation strategy and a motion refinement network, respectively, and get the grid-based trajectories via temporal association. In the trajectory smoothing stage, we devise a novel network to predict dynamic smoothing kernels for trajectory smoothing, which can well adapt to trajectories with different dynamic patterns. We exploit the spatial and temporal coherence of keypoints and grid vertices to formulate the training objectives, resulting in an unsupervised training scheme. Experiment results on public benchmarks show that DUT outperforms state-of-the-art methods both qualitatively and quantitatively. The source code is available at https://github.com/Annbless/DUTCode.