论文标题
弗里德里奇(Friedrichs)在任意域中类型的不平等现象
Friedrichs type inequalities in arbitrary domains
论文作者
论文摘要
提供了在任意域中用于Sobolev功能的Friedrichs类型的一阶和二阶不平等。相关的不平等涉及独立于域几何形状的最佳规范和常数。还介绍了对矢量值函数的对称梯度Sobolev空间的平行不平等。结果是通过我们早期贡献[4]和[5]中建立的一般标准得出的。
First and second-order inequalities of Friedrichs type for Sobolev functions in arbitrary domains are offered. The relevant inequalities involve optimal norms and constants that are independent of the geometry of the domain. Parallel inequalities for symmetric gradient Sobolev spaces of vector-valued functions are also presented. The results are derived via general criteria established in our earlier contributions [4] and [5].