论文标题
使用深度学习的稀疏视图光谱CT重建
Sparse-View Spectral CT Reconstruction Using Deep Learning
论文作者
论文摘要
光谱计算机断层扫描(CT)是一种能够提供高化学特异性的新兴技术,这对于许多应用,例如检测行李中的威胁至关重要。这种类型的应用程序需要快速和高质量的图像重建,并且通常基于稀疏视图(少数)预测。常规的过滤后背影(FBP)方法很快,但它产生的低质量图像以稀疏视图CT中的噪声和伪影主导。例如,随着计算负载与光谱通道的数量相称地增加,具有总变化正则化的迭代方法可以阐明,但是计算负载在计算上很昂贵。取而代之的是,我们建议使用具有多通道输入和输出的U-NET卷积神经网络架构快速重建稀疏光谱CT数据。对网络进行了训练,可以从FBP输入图像重建中输出高质量的CT图像。我们的方法在运行时很快,由于内部卷积是在通道之间共享的,因此计算负载仅在第一层和最后一层增加,这使其成为使用大量通道处理光谱数据的有效方法。我们已经使用实际CT扫描验证了我们的方法。我们的结果在定性和定量上表明,我们的方法的表现优于最新的迭代方法。此外,结果表明网络可以利用频道的耦合以提高整体质量和鲁棒性。
Spectral computed tomography (CT) is an emerging technology capable of providing high chemical specificity, which is crucial for many applications such as detecting threats in luggage. This type of application requires both fast and high-quality image reconstruction and is often based on sparse-view (few) projections. The conventional filtered back projection (FBP) method is fast but it produces low-quality images dominated by noise and artifacts in sparse-view CT. Iterative methods with, e.g., total variation regularizers can circumvent that but they are computationally expensive, as the computational load proportionally increases with the number of spectral channels. Instead, we propose an approach for fast reconstruction of sparse-view spectral CT data using a U-Net convolutional neural network architecture with multi-channel input and output. The network is trained to output high-quality CT images from FBP input image reconstructions. Our method is fast at run-time and because the internal convolutions are shared between the channels, the computational load increases only at the first and last layers, making it an efficient approach to process spectral data with a large number of channels. We have validated our approach using real CT scans. Our results show qualitatively and quantitatively that our approach outperforms the state-of-the-art iterative methods. Furthermore, the results indicate that the network can exploit the coupling of the channels to enhance the overall quality and robustness.