论文标题

用于定位主流集的参数化算法

Parameterized algorithms for locating-dominating sets

论文作者

Cappelle, Márcia R., Gomes, Guilherme C. M., Santos, Vinicius F. dos

论文摘要

图表$ g $的定位集合$ d $是一组$ g $的集合,其中$ d $中的每个顶点在$ d $中都有一个唯一的社区,而定位为主机的设置问题询问$ g $是否包含这样的界限限制尺寸的集合。已知此问题是$ \ mathsf {np-hard} $,即使在限制的图形类中,例如间隔图,拆分图和平面双分支亚基图。另一方面,对于某些图形类,例如树和更一般而言,可以在多项式时间内解决,并且可以解决。尽管这些结果对问题的参数化复杂性具有许多影响,但在结构参数化下的核化方面知之甚少。在这项工作中,我们开始在文献中填补这一空白。我们的第一个结果表明,定位式设置,当通过解决方案尺寸$ d $参数化时,请承认no $ 2^{o(d \ log d)} $ time算法,除非指数时间假设失败;作为推论,我们还表明,没有$ n^{o(d)} $ time算法存在于ETH下,这意味着幼稚的$ \ mathsf {xp} $算法实质上是最佳的。 We present an exponential kernel for the distance to cluster parameterization and show that, unless $\mathsf{NP-hard} \subseteq \mathsf{NP-hard}/$\mathsf{poly}$, no polynomial kernel exists for Locating-Dominating Set when parameterized by vertex cover nor when parameterized by distance to clique.然后,我们将注意力转向不受前两个界限的参数,并在通过最大叶子数参数化时表现出线性内核;在这种情况下,我们通过反馈边缘设置将参数化作为我们研究中的主要开放问题。

A locating-dominating set $D$ of a graph $G$ is a dominating set of $G$ where each vertex not in $D$ has a unique neighborhood in $D$, and the Locating-Dominating Set problem asks if $G$ contains such a dominating set of bounded size. This problem is known to be $\mathsf{NP-hard}$ even on restricted graph classes, such as interval graphs, split graphs, and planar bipartite subcubic graphs. On the other hand, it is known to be solvable in polynomial time for some graph classes, such as trees and, more generally, graphs of bounded cliquewidth. While these results have numerous implications on the parameterized complexity of the problem, little is known in terms of kernelization under structural parameterizations. In this work, we begin filling this gap in the literature. Our first result shows that Locating-Dominating Set, when parameterized by the solution size $d$, admits no $2^{o(d \log d)}$ time algorithm unless the Exponential Time Hypothesis fails; as a corollary, we also show that no $n^{o(d)}$ time algorithm exists under ETH, implying that the naive $\mathsf{XP}$ algorithm is essentially optimal. We present an exponential kernel for the distance to cluster parameterization and show that, unless $\mathsf{NP-hard} \subseteq \mathsf{NP-hard}/$\mathsf{poly}$, no polynomial kernel exists for Locating-Dominating Set when parameterized by vertex cover nor when parameterized by distance to clique. We then turn our attention to parameters not bounded by neither of the previous two, and exhibit a linear kernel when parameterizing by the max leaf number; in this context, we leave the parameterization by feedback edge set as the primary open problem in our study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源