论文标题

VIDI:描述性视觉数据聚类作为COVID-19的放射线助理助理19流诊断

ViDi: Descriptive Visual Data Clustering as Radiologist Assistant in COVID-19 Streamline Diagnostic

论文作者

Ravi, Sahithya, Khoshrou, Samaneh, Pechenizkiy, Mykola

论文摘要

鉴于Covid-19的大流行,在从胸部X射线中检测COVID-19时,已经广泛研究了深度学习方法。但是,将AI方法应用于医学诊断的一种更务实的方法是设计一个有助于人机互动和专家决策的框架。研究表明,分类可以在加速现实世界决策中起基本规则。受描述性文档群集的启发,我们提出了一个独立于域的解释性聚类框架,以分组与上下文相关的实例并支持放射科医生的决策。尽管大多数描述性聚类方法采用特定领域的特征来形成有意义的群集,但我们将重点放在模型级解释中,作为每个学习过程中更通用的元素,以实现集群同质性。我们采用深色图表来生成均匀的群集,以疾病的严重程度来描述群集,并使用有利和不利的显着性图来形象化,从而可视化类别的图像区域。这些人解释的地图补充了放射科医生的知识,以一次研究整个群集。此外,作为本研究的一部分,我们评估了一个基于VGG-19的模型,该模型可以鉴定阳性预测值分别为95%和97%,可与最近可解释的COVID诊断方法相媲美。

In the light of the COVID-19 pandemic, deep learning methods have been widely investigated in detecting COVID-19 from chest X-rays. However, a more pragmatic approach to applying AI methods to a medical diagnosis is designing a framework that facilitates human-machine interaction and expert decision making. Studies have shown that categorization can play an essential rule in accelerating real-world decision making. Inspired by descriptive document clustering, we propose a domain-independent explanatory clustering framework to group contextually related instances and support radiologists' decision making. While most descriptive clustering approaches employ domain-specific characteristics to form meaningful clusters, we focus on model-level explanation as a more general-purpose element of every learning process to achieve cluster homogeneity. We employ DeepSHAP to generate homogeneous clusters in terms of disease severity and describe the clusters using favorable and unfavorable saliency maps, which visualize the class discriminating regions of an image. These human-interpretable maps complement radiologist knowledge to investigate the whole cluster at once. Besides, as part of this study, we evaluate a model based on VGG-19, which can identify COVID and pneumonia cases with a positive predictive value of 95% and 97%, respectively, comparable to the recent explainable approaches for COVID diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源