论文标题

重新定义非平衡稳态和普遍的Hopfield歧视

Reformulating non-equilibrium steady-states and generalised Hopfield discrimination

论文作者

Cetiner, Ugur, Gunawardena, Jeremy

论文摘要

尽管在非平衡物理学方面取得了长足的进展,但稳态(S.S.)概率仍然可与分析相处。对于马尔可夫的过程,S.S。概率可以使用基于图的线性框架中的矩阵定理(MTT)以过渡速率表示。 MTT显示,远离均衡,S.S。概率在全球范围内取决于所有速率,表达式在系统大小中成倍增长。这种压倒性的复杂性和缺乏热力学解释极大地阻碍了分析。在这里,我们表明S.S.概率与$ \ exp(-s(p))$的平均值成正比,其中$ s(p)$是图表中沿最小路径,$ p $生成的熵,并且在跨越树上的概率分布中获得平均值。假设Arrhenius速率,这种“树木”分布变成类似Boltzmann的样子,树的能量是其总边缘屏障能。该重新印象提供了一种热力学解释,可以平稳地概括平衡统计力学并重新组织表达复杂性:独特的最小路径熵的数量取决于熵产生指数,这是一种非平衡复杂性的新图理论度量,而不是图形大小。我们通过扩展了Hopfield对具有索引1图的任何图表的歧视分析来证明这种重新制定的力量。我们得出了误差比的一般公式,并使用它来表明局部能量耗散可以通过全球协同作用产生最佳的歧视。

Despite substantial progress in non-equilibrium physics, steady-state (s.s.) probabilities remain intractable to analysis. For a Markov process, s.s. probabilities can be expressed in terms of transition rates using the Matrix-Tree theorem (MTT) in the graph-based linear framework. The MTT reveals that, away from equilibrium, s.s. probabilities become globally dependent on all rates, with expressions growing exponentially in the system size. This overwhelming complexity and lack of thermodynamic interpretation have greatly impeded analysis. Here, we show that s.s. probabilities are proportional to the average of $\exp(-S(P))$, where $S(P)$ is the entropy generated along minimal paths, $P$, in the graph, and the average is taken over a probability distribution on spanning trees. Assuming Arrhenius rates, this "arboreal" distribution becomes Boltzmann-like, with the energy of a tree being its total edge barrier energy. This reformulation offers a thermodynamic interpretation that smoothly generalises equilibrium statistical mechanics and reorganises the expression complexity: the number of distinct minimal-path entropies depends on the entropy production index, a new graph-theoretic measure of non-equilibrium complexity, not on graph size. We demonstrate the power of this reformulation by extending Hopfield's analysis of discrimination by kinetic proofreading to any graph with index 1. We derive a general formula for the error ratio and use it to show that local energy dissipation can yield optimal discrimination through global synergy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源