论文标题
MG-MAMPOSST:使用星系簇的动力学测试重力修饰的代码
MG-MAMPOSSt: A code to test modifications of gravity with the dynamics of galaxy clusters
论文作者
论文摘要
我们提出了\ textsc {mg-mamposst}的升级版本,该版本的扩展是\ textsc {mamposst}算法的扩展,该算法执行了贝叶斯的质量和速度各向异性模型的模型,以便在投影相位空间中分布到示踪剂的分布,以处理修改的坟墓模型和约束他们的参数。新版本实现了两种不同类型的重力修饰,即通用变色龙和Vainshtein筛选,并进一步配备了蒙特卡罗 - 马科夫 - 链模块,以进行有效的参数空间探索。该程序与\ textsc {clustergen}代码相辅相成,能够在球形对称性,动力学平衡和高斯局部速度分布的假设下产生模拟的星系簇,如\ textsc {mamposst}中的功能。我们通过分析一组合成的球形对称暗物质光环来证明该方法的潜力,重点关注模型参数之间的统计脱落。假设有其他类似镜头的信息的可用性,我们预测了即将到来的星系集群surveys,从关节透镜+内部运动学分析中预期,对两个模型的修改重力参数的约束。在Vainshtein筛选中,我们通过估计完整的收缩剪切曲线来预测弱透镜效应。对于变色龙筛选,我们在模型的两个自由参数的空间中限制了允许的区域,进一步关注$ f(\ Mathcal {r})$ sublass $ sublass,以在背景字段$ | f _ {\ Mathcal {\ Mathcal {r} 0} 0} | $上获得现实界限。我们的分析证明了内部运动学和镜头探针的互补性,以限制修饰的重力理论,以及通过两个探针的组合,对Vainshtein-Screcrecrecre缩放理论的界限如何改善。
We present an upgraded version of \textsc{MG-MAMPOSSt}, an extension of the \textsc{MAMPOSSt} algorithm that performs Bayesian fits of models of mass and velocity anisotropy profiles to the distribution of tracers in projected phase space, to handle modified gravity models and constrain their parameters. The new version implements two distinct types of gravity modifications, namely general chameleon and Vainshtein screening, and is further equipped with a Monte-Carlo-Markov-Chain module for an efficient parameter space exploration. The program is complemented by the \textsc{ClusterGEN} code, capable of producing mock galaxy clusters under the assumption of spherical symmetry, dynamical equilibrium, and Gaussian local velocity distribution functions as in \textsc{MAMPOSSt}. We demonstrate the potential of the method by analysing a set of synthetic, isolated spherically-symmetric dark matter haloes, focusing on the statistical degeneracies between model parameters. Assuming the availability of additional lensing-like information, we forecast the constraints on the modified gravity parameters for the two models presented, as expected from joint lensing+internal kinematics analyses, in view of upcoming galaxy cluster surveys. In Vainshtein screening, we forecast the weak lensing effect through the estimation of the full convergence-shear profile. For chameleon screening, we constrain the allowed region in the space of the two free parameters of the model, further focusing on the $f(\mathcal{R})$ subclass to obtain realistic bounds on the background field $|f_{\mathcal{R}0}|$. Our analysis demonstrates the complementarity of internal kinematics and lensing probes for constraining modified gravity theories, and how the bounds on Vainshtein-screened theories improve through the combination of the two probes.