论文标题

关于最小的子空间ZP-NULL设计

On minimal subspace Zp-null designs

论文作者

Krotov, Denis S.

论文摘要

让$ Q $是Prime $ P $的功率,让$ v $是$ n $二维的空间,而现场gf $(q)$。 A $Z_p$-valued function $C$ on the set of $k$-dimensional subspaces of $V$ is called a $k$-uniform $Z_p$-null design of strength $t$ if for every $t$-dimensional subspace $y$ of $V$ the sum of $C$ over the $k$-dimensional superspaces of $y$ equals $0$.对于$ q = p = 2 $和$ 0 \ le t <k <n $,我们证明了非void $ k $ - 均匀的最小二方数,$ k $ z_p $ z_p $ -null强度$ t $ t $等于$ 2^{t+1} $。对于$ q> 2 $,我们给出了该数字的下限和上限。

Let $q$ be a power of a prime $p$, and let $V$ be an $n$-dimensional space over the field GF$(q)$. A $Z_p$-valued function $C$ on the set of $k$-dimensional subspaces of $V$ is called a $k$-uniform $Z_p$-null design of strength $t$ if for every $t$-dimensional subspace $y$ of $V$ the sum of $C$ over the $k$-dimensional superspaces of $y$ equals $0$. For $q=p=2$ and $0\le t<k<n$, we prove that the minimum number of non-zeros of a non-void $k$-uniform $Z_p$-null design of strength $t$ equals $2^{t+1}$. For $q>2$, we give lower and upper bounds for that number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源