论文标题
三维海森伯格普遍性的边界关键行为
Boundary critical behavior of the three-dimensional Heisenberg universality class
论文作者
论文摘要
我们研究了在二维表面的情况下,研究三维海森堡普遍性的边界临界行为。通过改进的晶格模型的高精度蒙特卡洛模拟,在该模型中抑制了前导的散装缩放校正,我们证明存在特殊相变的存在,具有不寻常的指数,并且具有对数衰减相关的非凡相。这些发现与宽大表面相图上的幼稚论点形成鲜明对比,并让我们解释了量子自旋模型的边界关键行为的最新令人困惑的结果。
We study the boundary critical behavior of the three-dimensional Heisenberg universality class, in the presence of a bidimensional surface. By means of high-precision Monte Carlo simulations of an improved lattice model, where leading bulk scaling corrections are suppressed, we prove the existence of a special phase transition, with unusual exponents, and of an extraordinary phase with logarithmically decaying correlations. These findings contrast with naïve arguments on the bulk-surface phase diagram, and allow us to explain some recent puzzling results on the boundary critical behavior of quantum spin models.