论文标题
联系Join-semilattices
Contact join-semilattices
论文作者
论文摘要
接触代数是基于区域的空间理论的主要工具之一。在\ cite {dmvw1,dmvw2,iv,i1}中,它通过放下布尔操作补充而概括。此外,我们还可以通过丢弃操作会议来概括接触代数。因此,我们获得了称为“接触式联接 - 偏 - 米拉门特(CJS)”和“分布触点联接 - 埃米尔拉室(DCJ)”的结构。我们获得了CJS的设定理论表示定理和DCJS的关系代表定理。作为推论,我们也会获得拓扑表示定理。我们证明,CJS和DCJ的通用理论是相同的,并且是可决定的。
Contact algebra is one of the main tools in region-based theory of space. In \cite{dmvw1, dmvw2,iv,i1} it is generalized by dropping the operation Boolean complement. Furthermore we can generalize contact algebra by dropping also the operation meet. Thus we obtain structures, called contact join-semilattices (CJS) and structures, called distributive contact join-semilattices (DCJS). We obtain a set-theoretical representation theorem for CJS and a relational representation theorem for DCJS. As corollaries we get also topological representation theorems. We prove that the universal theory of CJS and of DCJS is the same and is decidable.