论文标题
IRS辅助多用户通信系统的深层剩余网络授权渠道估计
Deep Residual Network Empowered Channel Estimation for IRS-Assisted Multi-User Communication Systems
论文作者
论文摘要
渠道估计在实现实用的智能反映表面辅助多用户通信(IRS-MC)系统方面非常重要。但是,与传统通信系统不同,IRS-MC系统通常涉及具有复杂统计分布的级联渠道,这阻碍了贝叶斯估计器的实现。为了进一步提高渠道估计性能,在本文中,我们将渠道估计标记为降解问题,并采用数据驱动的方法来实现渠道估计。具体而言,我们提出了一个基于卷积的神经网络(CNN)的深度残留网络(CDRN),以隐式学习从基于嘈杂的试点的观测值中恢复通道系数的残留噪声。在拟议的CDRN中,配备有元素的减法结构的CNN去核块旨在利用嘈杂通道矩阵的空间特征和同时提高估计精度的噪声矩阵的空间特征和噪声的添加性。仿真结果表明,所提出的方法几乎可以达到与需要通道分布知识的最佳最小均方根误差(MMSE)估计器相同的估计精度。
Channel estimation is of great importance in realizing practical intelligent reflecting surface-assisted multi-user communication (IRS-MC) systems. However, different from traditional communication systems, an IRS-MC system generally involves a cascaded channel with a sophisticated statistical distribution, which hinders the implementations of the Bayesian estimators. To further improve the channel estimation performance, in this paper, we model the channel estimation as a denoising problem and adopt a data-driven approach to realize the channel estimation. Specifically, we propose a convolutional neural network (CNN)-based deep residual network (CDRN) to implicitly learn the residual noise for recovering the channel coefficients from the noisy pilot-based observations. In the proposed CDRN, a CNN denoising block equipped with an element-wise subtraction structure is designed to exploit both the spatial features of the noisy channel matrices and the additive nature of the noise simultaneously, which further improves the estimation accuracy. Simulation results demonstrate that the proposed method can almost achieve the same estimation accuracy as that of the optimal minimum mean square error (MMSE) estimator requiring the knowledge of the channel distribution.