论文标题

使用3D坐标进行分子属性预测的定向图注意神经网络

Directed Graph Attention Neural Network Utilizing 3D Coordinates for Molecular Property Prediction

论文作者

Qian, Chen, Xiong, Yunhai, Chen, Xiang

论文摘要

近年来,计算机视觉(CV)和自然语言游行(NLP)的繁荣促使许多其他领域的深度学习发展。机器学习的进步为我们提供了一种替代选择,除了计算昂贵的密度功能理论(DFT)。内核法和图神经网络已被广泛研究为属性预测的两种主流方法。在最近的研究中,有前途的图神经网络与特定对象的DFT方法达到了可比的精度。但是,到目前为止,大多数具有高精度的图形神经网络都需要完全连接的图形图形,将成对距离分布作为边缘信息。在这项工作中,我们阐明了定向图的注意神经网络(DGANN),该网络仅在边缘和分子的键和原子上进行化学键。 DGANN与以前的模型区分开了这些特征:(1)它通过化学键的图表来了解局部化学环境。每个初始边缘消息只能流入一次传递轨迹的每个消息。 (2)变压器阻止局部原子编码的全局分子表示。 (3)位置向量和坐标用作输入而不是距离。即使没有彻底的超参数搜索,我们的模型已经在QM9数据集上匹配或胜过大多数基线图神经网络。此外,这项工作表明,即使没有旋转和翻译不变性,直接利用3D坐标的模型仍可以达到高精度的分子表示。

The prosperity of computer vision (CV) and natural language procession (NLP) in recent years has spurred the development of deep learning in many other domains. The advancement in machine learning provides us with an alternative option besides the computationally expensive density functional theories (DFT). Kernel method and graph neural networks have been widely studied as two mainstream methods for property prediction. The promising graph neural networks have achieved comparable accuracy to the DFT method for specific objects in the recent study. However, most of the graph neural networks with high precision so far require fully connected graphs with pairwise distance distribution as edge information. In this work, we shed light on the Directed Graph Attention Neural Network (DGANN), which only takes chemical bonds as edges and operates on bonds and atoms of molecules. DGANN distinguishes from previous models with those features: (1) It learns the local chemical environment encoding by graph attention mechanism on chemical bonds. Every initial edge message only flows into every message passing trajectory once. (2) The transformer blocks aggregate the global molecular representation from the local atomic encoding. (3) The position vectors and coordinates are used as inputs instead of distances. Our model has matched or outperformed most baseline graph neural networks on QM9 datasets even without thorough hyper-parameters searching. Moreover, this work suggests that models directly utilizing 3D coordinates can still reach high accuracies for molecule representation even without rotational and translational invariance incorporated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源