论文标题

DEFMO:快速移动对象的脱毛和形状恢复

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects

论文作者

Rozumnyi, Denys, Oswald, Martin R., Ferrari, Vittorio, Matas, Jiri, Pollefeys, Marc

论文摘要

当用相机捕获时,高速移动的物体显着模糊。当物体具有复杂的形状或纹理时,模糊的外观特别模棱两可。在这种情况下,经典方法甚至人类都无法恢复对象的外观和运动。我们提出了一种方法,该方法给定具有其估计背景的单个图像,在一系列子框架中输出对象的外观和位置,就好像是由高速摄像头捕获的(即时间超级分辨率)。所提出的生成模型将模糊的对象的图像嵌入了潜在空间表示中,将背景分开并呈现出鲜明的外观。受图像形成模型的启发,我们设计了新颖的自我监督损失函数项,以提高性能并显示出良好的概括能力。提出的DEFMO方法在复杂的合成数据集上进行了训练,但在来自多个数据集的现实世界数据上表现良好。 Defmo的表现优于艺术状态,并生成高质量的时间超分辨率框架。

Objects moving at high speed appear significantly blurred when captured with cameras. The blurry appearance is especially ambiguous when the object has complex shape or texture. In such cases, classical methods, or even humans, are unable to recover the object's appearance and motion. We propose a method that, given a single image with its estimated background, outputs the object's appearance and position in a series of sub-frames as if captured by a high-speed camera (i.e. temporal super-resolution). The proposed generative model embeds an image of the blurred object into a latent space representation, disentangles the background, and renders the sharp appearance. Inspired by the image formation model, we design novel self-supervised loss function terms that boost performance and show good generalization capabilities. The proposed DeFMO method is trained on a complex synthetic dataset, yet it performs well on real-world data from several datasets. DeFMO outperforms the state of the art and generates high-quality temporal super-resolution frames.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源