论文标题

推荐系统的自适应神经体系结构

Adaptive Neural Architectures for Recommender Systems

论文作者

Rafailidis, Dimitrios, Antaris, Stefanos

论文摘要

深度学习已证明是捕获用户偏好非线性关联的有效手段。但是,现有深度学习体系结构的主要缺点是,它们遵循固定的建议策略,忽略了用户的实时反馈。深度强化策略的最新进展表明,在用户与系统互动时,建议政策可以不断更新。通过这样做,我们可以学习适合用户对建议会议的偏好的最佳政策。深度加固策略的主要缺点是基于预定义和固定的神经体系结构。为了阐明如何处理这个问题,在这项研究中,我们首先提出了深入的强化学习策略,以进行推荐,并讨论由于固定的神经体系结构而引起的主要局限性。然后,我们详细介绍了如何将渐进神经体系结构的最新进展用于其他研究领域的连续任务。最后,我们提出了填补深度强化学习与适应性神经体系结构之间差距的关键挑战。我们为通过强化学习提供了基于每个用户反馈的最佳神经体系结构的指南,同时考虑实时建议和模型复杂性的预测性能。

Deep learning has proved an effective means to capture the non-linear associations of user preferences. However, the main drawback of existing deep learning architectures is that they follow a fixed recommendation strategy, ignoring users' real time-feedback. Recent advances of deep reinforcement strategies showed that recommendation policies can be continuously updated while users interact with the system. In doing so, we can learn the optimal policy that fits to users' preferences over the recommendation sessions. The main drawback of deep reinforcement strategies is that are based on predefined and fixed neural architectures. To shed light on how to handle this issue, in this study we first present deep reinforcement learning strategies for recommendation and discuss the main limitations due to the fixed neural architectures. Then, we detail how recent advances on progressive neural architectures are used for consecutive tasks in other research domains. Finally, we present the key challenges to fill the gap between deep reinforcement learning and adaptive neural architectures. We provide guidelines for searching for the best neural architecture based on each user feedback via reinforcement learning, while considering the prediction performance on real-time recommendations and the model complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源