论文标题

减少心肌细胞兴奋性的模型:比较业力和菲茨胡格·纳古莫

Reduced models of cardiomyocytes excitability: comparing Karma and FitzHugh-Nagumo

论文作者

Herrero, Maria Elena Gonzalez, Kuehn, Christian, Tsaneva-Atanasova, Krasimira

论文摘要

自1962年改编自贵族以来,Hodgkin和Huxley的模型拟合Purkinje纤维可以继续进行心肌细胞模型的改进。这些模型中的大多数是耦合方程式的高维系统,因此可能的数学分析也非常有限,甚至在数值上。这启发了减少的现象学模型的发展,这些模型在质量上保留了心肌细胞动力学的主要功能。在本文中,我们介绍了两个显着的低维模型之间动态的系统比较,即Fitzhugh-Nagumo模型\ cite {fitzhugh55,fitzhugh60,fitzhugh60,fitzhugh61}是可疑行为的原型,是Karma Model \ cite \ cite的多态版的原理版本\ cite {心肌细胞的行为很好。我们首先介绍模型并考虑其纯颂歌版本。我们分析了使用在几何奇异扰动理论的设置中使用的主要思想和步骤的ODE。接下来,我们转向空间扩展的模型,在该模型中,我们将重点放在1D中的波动波解决方案上。最后,我们对1D PDE KARMA模型变化的模型参数进行数值模拟,以系统地研究对波传播速度和形状的影响。总而言之,我们的研究提供了有关两个模型的关键相似性以及关键差异的参考。

Since Noble adapted in 1962 the model of Hodgkin and Huxley to fit Purkinje fibres the refinement of models for cardiomyocytes has continued. Most of these models are high-dimensional systems of coupled equations so that the possible mathematical analysis is quite limited, even numerically. This has inspired the development of reduced, phenomenological models that preserve qualitatively the main featuture of cardiomyocyte's dynamics. In this paper we present a systematic comparison of the dynamics between two notable low-dimensional models, the FitzHugh-Nagumo model \cite{FitzHugh55, FitzHugh60, FitzHugh61} as a prototype of excitable behaviour and a polynomial version of the Karma model \cite{Karma93, Karma94} which is specifically developed to fit cardiomyocyte's behaviour well. We start by introducing the models and considering their pure ODE versions. We analyse the ODEs employing the main ideas and steps used in the setting of geometric singular perturbation theory. Next, we turn to the spatially extended models, where we focus on travelling wave solutions in 1D. Finally, we perform numerical simulations of the 1D PDE Karma model varying model parameters in order to systematically investigate the impact on wave propagation velocity and shape. In summary, our study provides a reference regarding key similarities as well as key differences of the two models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源