论文标题

有限规则的顶点色图的分类

Classification of Finite Highly Regular Vertex-Coloured Graphs

论文作者

Heinrich, Irene, Schneider, Thomas, Schweitzer, Pascal

论文摘要

如果两个诱导的序列中的每个同构在k中,则颜色的图是k-紫tra词。如果最多k的一个顺序中的每个顶点的顶点数仅取决于S. 我们将有限的顶点色的k-紫质图和有限的顶点色的l-tuple常规图分别为k至少4和l至少5个。我们的定理尤其是有限的顶点色的超双重图,在该图中,超均匀的图表示该图同时在所有k中同时进行k-紫trahomosiens。

A coloured graph is k-ultrahomogeneous if every isomorphism between two induced subgraphs of order at most k extends to an automorphism. A coloured graph is t-tuple regular if the number of vertices adjacent to every vertex in a set S of order at most k depends only on the isomorphism type of the subgraph induced by S. We classify the finite vertex-coloured k-ultrahomogeneous graphs and the finite vertex-coloured l-tuple regular graphs for k at least 4 and l at least 5, respectively. Our theorem in particular classifies finite vertex-coloured ultrahomogeneous graphs, where ultrahomogeneous means the graph is simultaneously k-ultrahomogeneous for all k.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源