论文标题
无偏扩散的蒙特卡洛:两电子系统的多功能工具,限制在不同的几何形状中
The unbiased Diffusion Monte Carlo: a versatile tool for two-electron systems confined in different geometries
论文作者
论文摘要
基于扩散蒙特卡洛方法的计算代码可用于确定受各种性质和几何形状的外部电势限制的两电子系统的量子状态。在这项工作中,我们展示了该技术如何以其最简单的形式的应用(不采用复杂的分析猜测功能,允许获得令人满意的结果,并同时编写从一种类型的限制到另一种类型的限制的程序。这种适应性可以轻松探索系统的几何形状和结构。为了说明这些结果,我们介绍了两种基于氢的物种(H $ _2 $和H $ _3^+$)和两种不同类型的约束,纳米管和八面体晶体场的计算。
Computational codes based on the Diffusion Monte Carlo method can be used to determine the quantum state of two-electron systems confined by external potentials of various nature and geometry. In this work, we show how the application of this technique in its simplest form, that does not employ complex analytic guess functions, allows to obtain satisfactory results and, at the same time, to write programs that are readily adaptable from one type of confinement to another. This adaptability allows an easy exploration of the many possibilities in terms of both geometry and structure of the system. To illustrate these results, we present calculations in the case of two-electron hydrogen-based species (H$_2$ and H$_3^+$) and two different types of confinement, nanotube-like and octahedral crystal-field.