论文标题
评估未成年面部年龄估计准确性的影响因素
Assessing the Influencing Factors on the Accuracy of Underage Facial Age Estimation
论文作者
论文摘要
迅速对检测濒危未成年人的反应是执法的持续关注。许多以儿童为中心的调查取决于数字证据发现和分析。需要自动化的年龄估计技术来帮助进行这些研究以加快这一证据发现过程,并减少研究人员对创伤材料的接触。自动化技术还显示出减少从越来越多的设备和在线服务获得的证据积压的溢价的希望。缺乏足够的训练数据与自然的人类方差相结合,长期以来一直在阻碍准确的自动化年龄估计,尤其是对于未成年受试者而言。本文对两个超过21,800名未成年人的数据集进行了对两种云年龄估计服务(亚马逊Web服务的Rekognition Service和Microsoft Azure的Face API)的性能的全面评估。这项工作的目的是评估某些人类生物识别因素,面部表情和图像质量(即模糊,噪声,暴露和分辨率)对自动化年龄估计服务的结果的影响。彻底的评估使我们能够确定在未来的年龄估计系统中要克服的最具影响力的因素。
Swift response to the detection of endangered minors is an ongoing concern for law enforcement. Many child-focused investigations hinge on digital evidence discovery and analysis. Automated age estimation techniques are needed to aid in these investigations to expedite this evidence discovery process, and decrease investigator exposure to traumatic material. Automated techniques also show promise in decreasing the overflowing backlog of evidence obtained from increasing numbers of devices and online services. A lack of sufficient training data combined with natural human variance has been long hindering accurate automated age estimation -- especially for underage subjects. This paper presented a comprehensive evaluation of the performance of two cloud age estimation services (Amazon Web Service's Rekognition service and Microsoft Azure's Face API) against a dataset of over 21,800 underage subjects. The objective of this work is to evaluate the influence that certain human biometric factors, facial expressions, and image quality (i.e. blur, noise, exposure and resolution) have on the outcome of automated age estimation services. A thorough evaluation allows us to identify the most influential factors to be overcome in future age estimation systems.