论文标题
AKLT态作为ZX-DIAGRAM:量子状态的图解推理
AKLT-states as ZX-diagrams: diagrammatic reasoning for quantum states
论文作者
论文摘要
从Feynman图到张量网络,量子力学中计算的图表表示已经催化了物理学的进展。这些图代表了基本的数学操作和辅助物理解释,但通常不能直接计算。在本文中,我们介绍了基于ZX-Calculus的图形语言ZXH-Calculus,我们用来完全以图形方式代表和推理多体状态。作为演示,我们通过在ZXH-Calculus中表达了1D AKLT状态,即一种对称性受保护的拓扑状态,通过在微积分中开发高于1/2的旋转的表示。通过利用ZXH-Calculus规则的简化能力,我们表明该表示形式如何直接恢复AKLT矩阵 - 产品状态表示,拓扑保护的边缘状态的存在以及弦乐顺序参数的非呈现。扩展了这些已知属性的范围,我们的示意方法还使我们能够在分析上得出任何有限长度1D AKLT链的浆果相为$π$。此外,我们提供了一个替代证明,即可以将六角形晶格上的2D AKLT状态还原为图状态,表明它是通用的量子计算资源。最后,我们以图形方式构建了2D高阶拓扑阶段,我们用来说明破坏对称性相位的过渡。我们的结果表明,ZXH-Calculus是一种完全以图形方式代表和计算物理状态的强大语言,为开发更有效的多体算法铺平了道路,并给出了量子相变的新颖图表观点。
From Feynman diagrams to tensor networks, diagrammatic representations of computations in quantum mechanics have catalysed progress in physics. These diagrams represent the underlying mathematical operations and aid physical interpretation, but cannot generally be computed with directly. In this paper we introduce the ZXH-calculus, a graphical language based on the ZX-calculus, that we use to represent and reason about many-body states entirely graphically. As a demonstration, we express the 1D AKLT state, a symmetry protected topological state, in the ZXH-calculus by developing a representation of spins higher than 1/2 within the calculus. By exploiting the simplifying power of the ZXH-calculus rules we show how this representation straightforwardly recovers the AKLT matrix-product state representation, the existence of topologically protected edge states, and the non-vanishing of a string order parameter. Extending beyond these known properties, our diagrammatic approach also allows us to analytically derive that the Berry phase of any finite-length 1D AKLT chain is $π$. In addition, we provide an alternative proof that the 2D AKLT state on a hexagonal lattice can be reduced to a graph state, demonstrating that it is a universal quantum computing resource. Lastly, we build 2D higher-order topological phases diagrammatically, which we use to illustrate a symmetry-breaking phase transition. Our results show that the ZXH-calculus is a powerful language for representing and computing with physical states entirely graphically, paving the way to develop more efficient many-body algorithms and giving a novel diagrammatic perspective on quantum phase transitions.