论文标题
三角系统中的无质量量子自旋液体Sr $ _ {3} $ CUSB $ _ {2} $ o $ $ _ {9} $
Gapless quantum spin liquid in the triangular system Sr$_{3}$CuSb$_{2}$O$_{9}$
论文作者
论文摘要
我们在分层三角形SR $ _ {3} $ CUSB $ _ {2} $ o $ _ {9} $(SCSO)系统中报告无质量量子旋转液体行为。 X射线衍射显示了与原子位点相关的超晶格反射,这些原子位点订购到由SB平面良好分离的三角形Cu平面。 MUON自旋放松($ $ $ sr)的测量表明,尽管有大量的curie -weiss -weiss -weiss -weiss $θ____________________________cw,$ s = \ s = \ s = \ s = \ s = \ s = \ frac {1} {1} {2} $矩仍保持动态至65 mk。从散装易感性中提取。特定的热量测量还没有显示长期订单的迹象,降低到0.35 k。在5 k下方的磁性特异性热量($ \ Mathit {C} $ _ {\ Mathrm {M}} $)5 K下方揭示了$ \ Mathit {c} $ \ mathit {c} $ _ {\ MATHRM {\ MATHRM {MATHRM {M MATHRM {M MATHRM {M MATHRM {M MATHRM {M MATHRM {M MATHRM {M MATHRM {m} $ $ = $ $ = $ $ = $ $ = $ = $ = $ $ $ $ $ ucry.显着的$ t $$^{2} $对磁性热热的贡献使现象学具有现象学,并具有线性分散体的所谓迪拉克旋转激发。从低$ t $特定的热数据中,我们估计,使用狄拉克旋转液体ansatz估计,优势交换量表为$ \ sim $ 36 K,它距离微观密度功能理论计算($ \ sim $ 45 K)的值不远,而高温易感性分析($ \ sim $ \ sim $ 70 K)。线性比热系数约为18 mJ/mol-k $^2 $,比典型的费米液体大一些。
We report gapless quantum spin liquid behavior in the layered triangular Sr$_{3}$CuSb$_{2}$O$_{9}$ (SCSO) system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well-separated by Sb planes. Muon spin relaxation ($μ$SR) measurements show that the $S = \frac{1}{2}$ moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature $θ_{\mathrm{cw}} \simeq $ -143 K as extracted from the bulk susceptibility. Specific heat measurements also show no sign of long-range order down to 0.35 K. The magnetic specific heat ($\mathit{C}$$_{\mathrm{m}}$) below 5 K reveals a $\mathit{C}$$_{\mathrm{m}}$ $=$ $γT$ + $αT$$^{2}$ behavior. The significant $T$$^{2}$ contribution to the magnetic specific heat invites a phenomenology in terms of the so-called Dirac spinon excitations with a linear dispersion. From the low-$T$ specific heat data, we estimate the dominant exchange scale to be $\sim $ 36 K using a Dirac spin liquid ansatz which is not far from the values inferred from microscopic density functional theory calculations ($\sim $ 45 K) as well as high-temperature susceptibility analysis ($\sim$ 70 K). The linear specific heat coefficient is about 18 mJ/mol-K$^2$ which is somewhat larger than for typical Fermi liquids.