论文标题
算术进展中包含素数和七个立方体问题的简短效率间隔
Short effective intervals containing primes in arithmetic progressions and the seven cubes problem
论文作者
论文摘要
令$ q \ ge 3 $为非远外模量$ q \ ge3 $,让$ a $成为带有$ q $的正整数。对于任何$ε> 0 $,都存在$α> 0 $(可计算),因此对于所有$ x \geα(\ log q)^2 $,间隔$ \ weft [e^x,e^x,e^x,e^{x+ε} \ right] $都包含prime $ p $ a arithmetic trogression $ a \ a \ bmod bmod q $。在此算术进程中,这给出了最小值的界限:$ p(a,q)\ le e e^{α(\ log q)^2} $。例如,对于所有$ q \ ge 10^{30} $,$ p(a,q)\ le e^{4.401(\ log q)^2} $。最后,我们将此结果应用于确定大于$ e^{71 \,000} $的每个整数都是七个立方体的总和。
Let $q\ge 3$ be a non-exceptional modulus $q\ge3$, and let $a$ be a positive integer coprime with $q$. For any $ε>0$, there exists $α>0$ (computable), such that for all $x\ge α(\log q)^2$, the interval $\left[ e^x,e^{x+ε}\right]$ contains a prime $p$ in the arithmetic progression $a \bmod q$. This gives the bound for the least prime in this arithmetic progression: $P(a,q) \le e^{α(\log q)^2}$. For instance for all $q\ge 10^{30}$, $P(a,q) \le e^{4.401(\log q)^2}$. Finally, we apply this result to establish that every integer larger than $e^{71\,000}$ is a sum of seven cubes.