论文标题
使用Rosina/Cops从67p/Churyumov-Gerasimenko昏迷粒子中检测挥发物。 I. RAM仪表
Detection of volatiles undergoing sublimation from 67P/Churyumov-Gerasimenko coma particles using ROSINA/COPS. I. The ram gauge
论文作者
论文摘要
ESA Rosetta任务允许对67p/Churyumov-Gerasimenko彗星进行广泛的现场研究。在由板载彗星压力传感器(COPS)的RAM仪表进行的测量中,已经观察到偏离标称RAM量规信号的特征。这些归因于含有挥发物和折射率的彗星冰颗粒的挥发性分数的升华。 这项工作的目的是研究进入COPS RAM仪表的冰冷颗粒的挥发性含量。 检查了RAM量规测量值的特征,我们与影响仪器的彗星颗粒的挥发性成分相关联。所有具有足够高信号与噪声比率的升华特征都是通过拟合一个或多个指数衰减功能来建模的。这些拟合的参数用于对升华组件的不同组成进行分类。 从归因于冰升华的特征,我们推断出73个含有挥发物的冰冷颗粒的检测。 25个检测具有足够的挥发性含量来进行深入研究。从指数衰减常数的值来看,我们将25种推断的冰颗粒分为三种类型,被解释为不同的挥发性组成,可能会因不同的形态而更加复杂。可用的数据没有指出哪些分子组成不同类型的分子。然而,我们可以估计挥发物的总体积,表示为等效水球的直径(密度为1 g cm $^{ - 3} $)。发现这是数百纳米的顺序。
The ESA Rosetta mission has allowed an extensive in-situ study of comet 67P/Churyumov-Gerasimenko. In measurements performed by the ram gauge of the on-board COmet Pressure Sensor (COPS), features have been observed that deviate from the nominal ram gauge signal. These are attributable to the sublimation of the volatile fraction of cometary icy particles containing volatiles and refractories. The objective of this work is the investigation of the volatile content of icy particles that entered the COPS ram gauge. The ram gauge measurements are inspected for features that we associate to the sublimation of the volatile component of cometary particles impacting the instrument. All sublimation features with high enough signal to noise ratio are modelled by fitting one or more exponential decay functions. The parameters of these fits are used to categorise different compositions of the sublimating component. From features attributable to ice sublimation, we infer the detection of 73 icy particles containing volatiles. 25 detections have enough volatile content for an in-depth study. From the values of the exponential decay constants, we classified the 25 inferred icy particles into three types, interpreted as different volatile compositions, possibly further complicated by different morphologies. Available data do not give indication as to which molecules compose the different types. Nevertheless, we can estimate the total volume of volatiles, expressed as the diameter of an equivalent sphere of water (density of 1 g cm$^{-3}$). This was found to be on the order of hundreds of nanometres.