论文标题

建筑模拟中的在线模型交换

Online Model Swapping in Architectural Simulation

论文作者

Lavin, Patrick, Young, Jeffrey, Vuduc, Rich, Beard, Jonathan

论文摘要

随着系统和应用程序的增长,详细的模拟需要越来越多的时间。增加仿真时间的前景导致设计较慢的迭代效力架构师使用更简单的模型,例如电子表格,当他们想快速迭代设计时。但是,从简单的模拟迁移到更详细的任务通常需要多次执行才能查找简单模型可能是有效的地方,这比首先要比运行详细模型更昂贵。同样,建筑师通常必须依靠直觉来选择这些更简单的模型,从而使问题更加复杂。 在这项工作中,我们提出了一种通过在线监视模拟行为并自动以更简单的统计近似值来自动交换详细模型,从而弥合了简单和详细的模拟之间的差距。我们通过在开源模拟器sve-cachesim中实现方法来证明我们的方法的潜力,以在内存层次结构中交换一级数据缓存(L1D)。该概念证明表明,我们的技术不仅可以在局部时间不变的统计范围近似时处理非平凡的用例,还可以处理随时间变化的统计数据(例如,L1D是时间序列功能的一种形式),以及下游副作用(例如,L1D Filters访问两个级别的级别)。我们的仿真将内置的缓存模型换成模拟周期数中仅有8%误差的内置缓存模型,同时将近似的缓存模型用于模拟的90%以上,并且我们的简单模型需要每个模型的“执行”计算少2到八倍。

As systems and applications grow more complex, detailed simulation takes an ever increasing amount of time. The prospect of increased simulation time resulting in slower design iteration forces architects to use simpler models, such as spreadsheets, when they want to iterate quickly on a design. However, the task of migrating from a simple simulation to one with more detail often requires multiple executions to find where simple models could be effective, which could be more expensive than running the detailed model in the first place. Also, architects must often rely on intuition to choose these simpler models, further complicating the problem. In this work, we present a method of bridging the gap between simple and detailed simulation by monitoring simulation behavior online and automatically swapping out detailed models with simpler statistical approximations. We demonstrate the potential of our methodology by implementing it in the open-source simulator SVE-Cachesim to swap out the level one data cache (L1D) within a memory hierarchy. This proof of concept demonstrates that our technique can handle a non-trivial use-case in not just approximation of local time-invariant statistics, but also those that vary with time (e.g., the L1D is a form of a time-series function), and downstream side-effects (e.g., the L1D filters accesses for the level two cache). Our simulation swaps out the built-in cache model with only an 8% error in the simulated cycle count while using the approximated cache models for over 90% of the simulation, and our simpler models require two to eight times less computation per "execution" of the model

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源