论文标题

深度光谱CNN用于激光诱导的分解光谱法

Deep Spectral CNN for Laser Induced Breakdown Spectroscopy

论文作者

Castorena, Juan, Oyen, Diane, Ollila, Ann, Legget, Carey, Lanza, Nina

论文摘要

这项工作提出了在激光诱导的分解光谱(LIB)信号上运行的光谱卷积神经网络(CNN),以学会学会(1)从传感器不确定性的来源(即,处理前)和(2)获得定性和定量测量的频谱含量(即,获得光谱的化学含量)的频谱(即(2),给出了光谱的化学含量(即给出了信号的化学量)。一旦训练了频谱CNN,它就可以通过单个进率通过,具有实时好处,并且没有任何其他侧面信息要求,包括黑电流,系统响应,温度和检测器到目标范围。我们的实验表明,所提出的方法的表现优于Mars Science Lab使用的现有方法,用于预处理和校准,用于从火星漫游车“好奇心”中进行遥感观察。

This work proposes a spectral convolutional neural network (CNN) operating on laser induced breakdown spectroscopy (LIBS) signals to learn to (1) disentangle spectral signals from the sources of sensor uncertainty (i.e., pre-process) and (2) get qualitative and quantitative measures of chemical content of a sample given a spectral signal (i.e., calibrate). Once the spectral CNN is trained, it can accomplish either task through a single feed-forward pass, with real-time benefits and without any additional side information requirements including dark current, system response, temperature and detector-to-target range. Our experiments demonstrate that the proposed method outperforms the existing approaches used by the Mars Science Lab for pre-processing and calibration for remote sensing observations from the Mars rover, 'Curiosity'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源