论文标题

平行残留双融合特征特征金字塔网络,用于精确的单发对象检测

Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection

论文作者

Chen, Ping-Yang, Chang, Ming-Ching, Hsieh, Jun-Wei, Chen, Yong-Sheng

论文摘要

本文提出了平行残留的双融合特征金字塔网络(PRB-FPN),以快速准确地单光对象检测。特征金字塔(FP)在最近的视觉检测中广泛使用,但是FP的自上而下的途径无法保留由于合并转移而导致的准确定位。随着使用更多层的较深的骨干,FP的优势被削弱了。此外,它不能同时准确地检测小物体和大型物体。为了解决这些问题,我们提出了一种新的并行FP结构,具有双向(自上而下和自下而上)的融合以及相关的改进,以保留高质量的特征以进行准确定位。我们提供以下设计改进:(1)具有自下而上的融合模块(BFM)的平行分歧FP结构,以高精度立即检测小物体和大对象。 (2)串联和重组(CORE)模块为特征融合提供了自下而上的途径,这导致双向融合FP可以从低层特征图中恢复丢失的信息。 (3)核心功能进一步纯化以保留更丰富的上下文信息。自上而下和自下而上的途径中的这种核心净化只能在几次迭代中完成。 (4)将残留设计添加到核心中,导致了一个新的重核模块,该模块可以轻松训练和集成,并具有更深或更轻的骨架。所提出的网络在UAVDT17和MS COCO数据集上实现了最先进的性能。代码可在https://github.com/pingyang1117/prbnet_pytorch上找到。

This paper proposes the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN) for fast and accurate single-shot object detection. Feature Pyramid (FP) is widely used in recent visual detection, however the top-down pathway of FP cannot preserve accurate localization due to pooling shifting. The advantage of FP is weakened as deeper backbones with more layers are used. In addition, it cannot keep up accurate detection of both small and large objects at the same time. To address these issues, we propose a new parallel FP structure with bi-directional (top-down and bottom-up) fusion and associated improvements to retain high-quality features for accurate localization. We provide the following design improvements: (1) A parallel bifusion FP structure with a bottom-up fusion module (BFM) to detect both small and large objects at once with high accuracy. (2) A concatenation and re-organization (CORE) module provides a bottom-up pathway for feature fusion, which leads to the bi-directional fusion FP that can recover lost information from lower-layer feature maps. (3) The CORE feature is further purified to retain richer contextual information. Such CORE purification in both top-down and bottom-up pathways can be finished in only a few iterations. (4) The adding of a residual design to CORE leads to a new Re-CORE module that enables easy training and integration with a wide range of deeper or lighter backbones. The proposed network achieves state-of-the-art performance on the UAVDT17 and MS COCO datasets. Code is available at https://github.com/pingyang1117/PRBNet_PyTorch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源