论文标题

折叠和展开

Folding and Unfolding on Metagraphs

论文作者

Goertzel, Ben

论文摘要

键入的群体被定义为超图,并分配给了Hyperedges及其目标,并且具有HypereDges目标的潜力连接到整个链接以及目标。通过将键入的群体中的每个边缘的目标划分为输入,输出和侧面集,引入了定向的打字元(DTMG)。然后可以查看边缘输出集链接到其他边缘输入集的“ Metapaths”。提出了对DTMGS的初始代数方法,包括引入构造函数来构建DTMG和法律,涉及使用这些构造函数的多种方式之间的关系。然后,在DTMG(语态,变形,组织态性,摄取量,杂态,杂种,年代表,变质性和变质术)上定义了有用的形态学类型的一种方法,为广泛的摘要提供了各种各样的杂物,该框架提供了各种各样的大型商品。在常见的TMG上定义的DTMG森林表示,在类型群体上的确定性和随机过程表示,可以将各种形态直接扩展到这些森林。提出了无方向性元的方法的变化;并指出了如何将框架概述的框架应用于涉及诸如依赖和概率类型,多维值和动态处理(包括插入和删除边缘)之类的复杂性的现实群体。

Typed metagraphs are defined as hypergraphs with types assigned to hyperedges and their targets, and the potential to have targets of hyperedges connect to whole links as well as targets. Directed typed metagraphs (DTMGs) are introduced via partitioning the targets of each edge in a typed metagraph into input, output and lateral sets; one can then look at "metapaths" in which edges' output-sets are linked to other edges' input-sets. An initial algebra approach to DTMGs is presented, including introduction of constructors for building up DTMGs and laws regarding relationships among multiple ways of using these constructors. A menagerie of useful morphism types is then defined on DTMGs (catamorphisms, anamorphisms, histomorphisms, futumorphisms, hylomorphisms, chronomorphisms, metamorphisms and metachronomorphisms), providing a general abstract framework for formulating a broad variety of metagraph operations. Deterministic and stochastic processes on typed metagraphs are represented in terms of forests of DTMGs defined over a common TMG, where the various morphisms can be straightforwardly extended to these forests. A variation of the approach to undirected typed metagraphs is presented; and it is indicated how the framework outlined can applied to realistic metagraphs involving complexities like dependent and probabilistic types, multidimensional values and dynamic processing including insertion and deletion of edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源