论文标题

SB-MTL:基于得分的元转移学习,用于跨域几次学习

SB-MTL: Score-based Meta Transfer-Learning for Cross-Domain Few-Shot Learning

论文作者

Cai, John, Cai, Bill, Shen, Sheng Mei

论文摘要

尽管许多深度学习方法在解决领域适应问题和分别学习少数学习方面取得了重大成功,但更少的方法能够共同解决跨域几乎没有射击学习(CD-FSL)中的这两个问题。在尖锐的域移动下,此问题加剧了,这代表了常见的计算机视觉应用。在本文中,我们提出了一种解决CD-FSL问题的新颖,灵活而有效的方法。我们的方法称为基于得分的元转移学习(SB-MTL),通过使用MAML优化的特征编码器和基于得分的图形神经网络结合了转移学习和元学习。首先,我们有一个功能编码器,其特定层设计为微调。为此,我们应用一阶MAML算法来找到良好的初始化。其次,我们没有在微调后直接进行分类得分,而是通过将前富裕的分类分数映射到公制空间来将分数解释为坐标。随后,我们应用图形神经网络将标签信息从支持集传播到基于分数的度量空间中的查询集。我们在更广泛的跨域少数学习(BSCD-FSL)基准的更广泛研究中测试了我们的模型,该基准包括一系列目标域与微型源源域具有高度不同的目标域。我们观察到5、20和50射门以及四个目标域的精度有显着提高。就平均准确性而言,我们的模型的表现优于先前的转移学习方法,而先前的元学习方法则高于14.28%。

While many deep learning methods have seen significant success in tackling the problem of domain adaptation and few-shot learning separately, far fewer methods are able to jointly tackle both problems in Cross-Domain Few-Shot Learning (CD-FSL). This problem is exacerbated under sharp domain shifts that typify common computer vision applications. In this paper, we present a novel, flexible and effective method to address the CD-FSL problem. Our method, called Score-based Meta Transfer-Learning (SB-MTL), combines transfer-learning and meta-learning by using a MAML-optimized feature encoder and a score-based Graph Neural Network. First, we have a feature encoder with specific layers designed to be fine-tuned. To do so, we apply a first-order MAML algorithm to find good initializations. Second, instead of directly taking the classification scores after fine-tuning, we interpret the scores as coordinates by mapping the pre-softmax classification scores onto a metric space. Subsequently, we apply a Graph Neural Network to propagate label information from the support set to the query set in our score-based metric space. We test our model on the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) benchmark, which includes a range of target domains with highly varying dissimilarity to the miniImagenet source domain. We observe significant improvements in accuracy across 5, 20 and 50 shot, and on the four target domains. In terms of average accuracy, our model outperforms previous transfer-learning methods by 5.93% and previous meta-learning methods by 14.28%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源