论文标题
在混合配方中,迭代性过采样技术以最大程度地限制通用多尺度有限元方法
Iterative Oversampling Technique for Constraint Energy Minimizing Generalized Multiscale Finite Element Method in the Mixed Formulation
论文作者
论文摘要
在本文中,我们开发了一种迭代方案,以在约束能量最小化通用的多尺度有限元法(CEM-GMSFEM)的框架内构建多尺度基础函数,以用于混合配方。迭代程序始于构建能量最小化快照空间的构建,该空间可用于近似模型问题的解决方案。然后在快照空间上执行光谱分解,以形成全局多尺度空间。在此设置下,每个全局的多尺度基础函数都可以分为无折扣和衰减零件。全球基础的未偿还部分是本地化的,并且在迭代期间是固定的。然后,可以通过适当定义的预处理通过修改后的Richardson方案近似腐烂的部分。使用这组基于迭代的多尺度函数,如果进行适当的迭代次数的迭代足够多次,则可以显示相对于粗网格尺寸的一阶收敛。提出了数值结果,以说明所提出的计算多尺度方法的有效性和效率。
In this paper, we develop an iterative scheme to construct multiscale basis functions within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for the mixed formulation. The iterative procedure starts with the construction of an energy minimizing snapshot space that can be used for approximating the solution of the model problem. A spectral decomposition is then performed on the snapshot space to form global multiscale space. Under this setting, each global multiscale basis function can be split into a non-decaying and a decaying parts. The non-decaying part of a global basis is localized and it is fixed during the iteration. Then, one can approximate the decaying part via a modified Richardson scheme with an appropriately defined preconditioner. Using this set of iterative-based multiscale basis functions, first-order convergence with respect to the coarse mesh size can be shown if sufficiently many times of iterations with regularization parameter being in an appropriate range are performed. Numerical results are presented to illustrate the effectiveness and efficiency of the proposed computational multiscale method.