论文标题
理想流体流的哈米尔顿港建模:第二部分。可压缩和不可压缩的流动
Port-Hamiltonian Modeling of Ideal Fluid Flow: Part II. Compressible and Incompressible Flow
论文作者
论文摘要
本文的第一部分介绍了riemannian歧管上理想流体流的港口港口模型的Stokes Dirac结构的系统推导。从作为流体的配置空间的差异组开始,dirac结构是通过泊松降低得出的,然后通过边界端口和分布式端口增强。已显示其他边界端口自然显示为表面术语在双图的配对中,在标准汉密尔顿理论中始终忽略。第一部分中介绍的哈米尔顿港模型仅与流体的动能以及其能量变量如何演变相对应。 在第二部分中,我们利用动力学港口港系统的分布端口来代表许多流体动力系统。通过添加内部能量,我们对绝热和等凝的可压缩流进行建模,并通过添加约束力对不可压缩的流量进行建模。使用的关键工具是将流体运动动力学与对流数量动力学相关的互连图。
Part I of this paper presented a systematic derivation of the Stokes Dirac structure underlying the port-Hamiltonian model of ideal fluid flow on Riemannian manifolds. Starting from the group of diffeomorphisms as a configuration space for the fluid, the Stokes Dirac structure is derived by Poisson reduction and then augmented by boundary ports and distributed ports. The additional boundary ports have been shown to appear naturally as surface terms in the pairings of dual maps, always neglected in standard Hamiltonian theory. The port-Hamiltonian model presented in Part I corresponded only to the kinetic energy of the fluid and how its energy variables evolve such that the energy is conserved. In Part II, we utilize the distributed port of the kinetic energy port-Hamiltonian system for representing a number of fluid-dynamical systems. By adding internal energy we model compressible flow, both adiabatic and isentropic, and by adding constraint forces we model incompressible flow. The key tools used are the interconnection maps relating the dynamics of fluid motion to the dynamics of advected quantities.