论文标题
(0,2)均匀的hopf表面上的镜像对称性
(0,2) Mirror Symmetry on homogeneous Hopf surfaces
论文作者
论文摘要
在这项工作中,我们找到了(0,2)镜面对称性的第一个示例,上面是紧凑的非kähler络合物歧管。为此,我们遵循Borisov使用顶点代数和手性De Rham复合物对称对称性的方法。我们的(0,2)镜子的示例由成对的hopf表面给出,并带有bismut-flat pluriclated度量。要求几何形状是均匀的,我们将问题减少到在二次谎言代数上杀死旋转器的研究,并在超级咖啡因代数中构建$ n = 2 $ n = 2 $ superconformantermonformantermonformal fortex algebra,并结合了拓扑t- dialolity。
In this work we find the first examples of (0,2) mirror symmetry on compact non-Kähler complex manifolds. For this we follow Borisov's approach to mirror symmetry using vertex algebras and the chiral de Rham complex. Our examples of (0,2) mirrors are given by pairs of Hopf surfaces endowed with a Bismut-flat pluriclosed metric. Requiring that the geometry is homogeneous, we reduce the problem to the study of Killing spinors on a quadratic Lie algebra and the construction of embeddings of the $N=2$ superconformal vertex algebra in the superaffine vertex algebra, combined with topological T-duality.