论文标题

布尔功能序列何时驯服?

When are sequences of Boolean functions tame?

论文作者

Forsström, Malin Palö

论文摘要

在\ cite {js2006}中,乔纳森(Jonasson)和斯蒂夫(Steif)指出,没有$ \ lim_ {n \ lim_ {n \ to \ fo \ infty} i(f_n)= n ge ege(n ge_n)= n ge_q with n $ { $)。在同伴论文\ cite {f}中,作者表明,通过在同一时间提供反例,同时提供$ \ lim_ {n \ to \ infty} np_n = \ in = \ infty $ and $ \ lim_和$ \ lim_ { )。$在本文中,我们表明,当序列$ $(p_n)_ {n \ geq 1} $远离零和一个时,猜想的结论会得出。

In \cite{js2006}, Jonasson and Steif conjectured that no non-degenerate sequence of transitive Boolean functions $ (f_n)_{n \geq 1}$ with $ \lim_{n \to \infty} I(f_n)= \infty $ could be tame (with respect to some $ (p_n)_{n \geq 1} $). In a companion paper \cite{f}, the author showed that this conjecture in its full generality is false, by providing a counter-example for the case when, at the same time, $\lim_{n \to \infty} np_n = \infty $ and $ \lim_{n \to \infty} n^αp_n = 0$ for some $ α\in (0,1 ).$ In this paper we show that with slightly different assumptions, the conclusion of the conjecture holds when the sequence $(p_n)_{n \geq 1}$ is bounded away from zero and one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源