论文标题
疟疾寄生虫和白细胞在厚血液涂片中的定位
Localization of Malaria Parasites and White Blood Cells in Thick Blood Smears
论文作者
论文摘要
有效地确定疟疾血症是帮助临床医生准确确定疾病严重程度并提供质量治疗的关键方面。施加在厚厚的涂片血液涂片上的显微镜是确定疟疾血症的事实方法。但是,寄生虫血症的手动量化是耗时,费力的,需要训练有素的专业知识,这在高度流行和资源低的领域尤其不足。这项研究提出了一种端到端的定位方法和疟疾寄生虫和白细胞(WBC)的计数,有助于有效地确定寄生虫血症。血液中寄生虫的定量含量。在厚血液涂片的图像片段的数据集上,我们建立了模型来分析获得的数字图像。为了提高由于数据集规模有限而提高模型性能,应用了数据增强。我们的初步结果表明,我们的深度学习方法可靠地检测并返回疟疾寄生虫和WBC的数量,并以很高的精度和回忆。我们还针对人类专家评估了我们的系统,结果表明我们的深度学习模型计数与手动专家计数之间存在很强的相关性(寄生虫的p = 0.998,WBC的p = 0.987)。这种方法可能会应用于支持疟疾寄生虫确定的确定,尤其是在缺乏足够的显微镜家的环境中。
Effectively determining malaria parasitemia is a critical aspect in assisting clinicians to accurately determine the severity of the disease and provide quality treatment. Microscopy applied to thick smear blood smears is the de facto method for malaria parasitemia determination. However, manual quantification of parasitemia is time consuming, laborious and requires considerable trained expertise which is particularly inadequate in highly endemic and low resourced areas. This study presents an end-to-end approach for localisation and count of malaria parasites and white blood cells (WBCs) which aid in the effective determination of parasitemia; the quantitative content of parasites in the blood. On a dataset of slices of images of thick blood smears, we build models to analyse the obtained digital images. To improve model performance due to the limited size of the dataset, data augmentation was applied. Our preliminary results show that our deep learning approach reliably detects and returns a count of malaria parasites and WBCs with a high precision and recall. We also evaluate our system against human experts and results indicate a strong correlation between our deep learning model counts and the manual expert counts (p=0.998 for parasites, p=0.987 for WBCs). This approach could potentially be applied to support malaria parasitemia determination especially in settings that lack sufficient Microscopists.